1
0
Fork 0
cl-sites/guile.html_node/Foreign-Structs.html

179 lines
9.4 KiB
HTML
Raw Normal View History

2024-12-17 12:49:28 +01:00
<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<!-- This manual documents Guile version 3.0.10.
Copyright (C) 1996-1997, 2000-2005, 2009-2023 Free Software Foundation,
Inc.
Copyright (C) 2021 Maxime Devos
Copyright (C) 2024 Tomas Volf
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free
Documentation License." -->
<title>Foreign Structs (Guile Reference Manual)</title>
<meta name="description" content="Foreign Structs (Guile Reference Manual)">
<meta name="keywords" content="Foreign Structs (Guile Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content=".texi2any-real">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Foreign-Function-Interface.html" rel="up" title="Foreign Function Interface">
<link href="More-Foreign-Functions.html" rel="next" title="More Foreign Functions">
<link href="Void-Pointers-and-Byte-Access.html" rel="prev" title="Void Pointers and Byte Access">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="https://www.gnu.org/software/gnulib/manual.css">
</head>
<body lang="en">
<div class="subsection-level-extent" id="Foreign-Structs">
<div class="nav-panel">
<p>
Next: <a href="More-Foreign-Functions.html" accesskey="n" rel="next">More Foreign Functions</a>, Previous: <a href="Void-Pointers-and-Byte-Access.html" accesskey="p" rel="prev">Void Pointers and Byte Access</a>, Up: <a href="Foreign-Function-Interface.html" accesskey="u" rel="up">Foreign Function Interface</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsection" id="Foreign-Structs-1"><span>6.19.7 Foreign Structs<a class="copiable-link" href="#Foreign-Structs-1"> &para;</a></span></h4>
<p>Finally, one last note on foreign values before moving on to actually
calling foreign functions. Sometimes you need to deal with C structs,
which requires interpreting each element of the struct according to the
its type, offset, and alignment. The <code class="code">(system foreign)</code> module has
some primitives to support this.
</p>
<div class="example">
<pre class="example-preformatted">(use-modules (system foreign))
</pre></div>
<dl class="first-deffn">
<dt class="deffn" id="index-sizeof"><span class="category-def">Scheme Procedure: </span><span><strong class="def-name">sizeof</strong> <var class="def-var-arguments">type</var><a class="copiable-link" href="#index-sizeof"> &para;</a></span></dt>
<dt class="deffnx def-cmd-deffn" id="index-scm_005fsizeof"><span class="category-def">C Function: </span><span><strong class="def-name">scm_sizeof</strong> <var class="def-var-arguments">(type)</var><a class="copiable-link" href="#index-scm_005fsizeof"> &para;</a></span></dt>
<dd><p>Return the size of <var class="var">type</var>, in bytes.
</p>
<p><var class="var">type</var> should be a valid C type, like <code class="code">int</code>.
Alternately <var class="var">type</var> may be the symbol <code class="code">*</code>, in which
case the size of a pointer is returned. <var class="var">type</var> may
also be a list of types, in which case the size of a
<code class="code">struct</code> with ABI-conventional packing is returned.
</p></dd></dl>
<dl class="first-deffn">
<dt class="deffn" id="index-alignof"><span class="category-def">Scheme Procedure: </span><span><strong class="def-name">alignof</strong> <var class="def-var-arguments">type</var><a class="copiable-link" href="#index-alignof"> &para;</a></span></dt>
<dt class="deffnx def-cmd-deffn" id="index-scm_005falignof"><span class="category-def">C Function: </span><span><strong class="def-name">scm_alignof</strong> <var class="def-var-arguments">(type)</var><a class="copiable-link" href="#index-scm_005falignof"> &para;</a></span></dt>
<dd><p>Return the alignment of <var class="var">type</var>, in bytes.
</p>
<p><var class="var">type</var> should be a valid C type, like <code class="code">int</code>.
Alternately <var class="var">type</var> may be the symbol <code class="code">*</code>, in which
case the alignment of a pointer is returned. <var class="var">type</var> may
also be a list of types, in which case the alignment of a
<code class="code">struct</code> with ABI-conventional packing is returned.
</p></dd></dl>
<p>Guile also provides some convenience syntax to efficiently read and
write C structs to and from bytevectors.
</p>
<dl class="first-deffn">
<dt class="deffn" id="index-read_002dc_002dstruct"><span class="category-def">Scheme Syntax: </span><span><strong class="def-name">read-c-struct</strong> <var class="def-var-arguments">bv offset <br> ((field type) &hellip;) k</var><a class="copiable-link" href="#index-read_002dc_002dstruct"> &para;</a></span></dt>
<dd><p>Read a C struct with fields of type <var class="var">type</var>... from the bytevector
<var class="var">bv</var>, at offset <var class="var">offset</var>. Bind the fields to the identifiers
<var class="var">field</var>..., and return <code class="code">(<var class="var">k</var> <var class="var">field</var> ...)</code>.
</p>
<p>Unless cross-compiling, the field types are evaluated at macro-expansion
time. This allows the resulting bytevector accessors and size/alignment
computations to be completely inlined.
</p></dd></dl>
<dl class="first-deffn">
<dt class="deffn" id="index-write_002dc_002dstruct"><span class="category-def">Scheme Syntax: </span><span><strong class="def-name">write-c-struct</strong> <var class="def-var-arguments">bv offset <br> ((field type) &hellip;)</var><a class="copiable-link" href="#index-write_002dc_002dstruct"> &para;</a></span></dt>
<dd><p>Write a C struct with fields <var class="var">field</var>... of type <var class="var">type</var>... to the bytevector
<var class="var">bv</var>, at offset <var class="var">offset</var>. Return zero values.
</p>
<p>Like <code class="code">write-c-struct</code> above, unless cross-compiling, the field
types are evaluated at macro-expansion time.
</p></dd></dl>
<p>For example, to define a parser and serializer for the equivalent of a
<code class="code">struct { int64_t a; uint8_t b; }</code>, one might do this:
</p>
<div class="example">
<pre class="example-preformatted">(use-modules (system foreign) (rnrs bytevectors))
(define-syntax-rule
(define-serialization (reader writer) (field type) ...)
(begin
(define (reader bv offset)
(read-c-struct bv offset ((field type) ...) values))
(define (writer bv offset field ...)
(write-c-struct bv offset ((field type) ...)))))
(define-serialization (read-struct write-struct)
(a int64) (b uint8))
(define bv (make-bytevector (sizeof (list int64 uint8))))
(write-struct bv 0 300 43)
(call-with-values (lambda () (read-struct bv 0))
list)
&rArr; (300 43)
</pre></div>
<p>There is also an older interface that is mostly equivalent to
<code class="code">read-c-struct</code> and <code class="code">write-c-struct</code>, but which uses run-time
dispatch, and operates on foreign pointers instead of bytevectors.
</p>
<dl class="first-deffn">
<dt class="deffn" id="index-parse_002dc_002dstruct"><span class="category-def">Scheme Procedure: </span><span><strong class="def-name">parse-c-struct</strong> <var class="def-var-arguments">foreign types</var><a class="copiable-link" href="#index-parse_002dc_002dstruct"> &para;</a></span></dt>
<dd><p>Parse a foreign pointer to a C struct, returning a list of values.
</p>
<p><code class="code">types</code> should be a list of C types.
</p></dd></dl>
<p>Our parser and serializer example for <code class="code">struct { int64_t a; uint8_t
b; }</code> looks more like this:
</p>
<div class="example">
<pre class="example-preformatted">(parse-c-struct (make-c-struct (list int64 uint8)
(list 300 43))
(list int64 uint8))
&rArr; (300 43)
</pre></div>
<p>As yet, Guile only has convenience routines to support
conventionally-packed structs. But given the <code class="code">bytevector-&gt;pointer</code>
and <code class="code">pointer-&gt;bytevector</code> routines, one can create and parse
tightly packed structs and unions by hand. See the code for
<code class="code">(system foreign)</code> for details.
</p>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="More-Foreign-Functions.html">More Foreign Functions</a>, Previous: <a href="Void-Pointers-and-Byte-Access.html">Void Pointers and Byte Access</a>, Up: <a href="Foreign-Function-Interface.html">Foreign Function Interface</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>