1
0
Fork 0
cl-sites/sqlite-doc-3440000/lang_datefunc.html
2023-11-03 12:08:53 +01:00

678 lines
26 KiB
HTML

<!DOCTYPE html>
<html><head>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<link href="sqlite.css" rel="stylesheet">
<title>Date And Time Functions</title>
<!-- path= -->
</head>
<body>
<div class=nosearch>
<a href="index.html">
<img class="logo" src="images/sqlite370_banner.gif" alt="SQLite" border="0">
</a>
<div><!-- IE hack to prevent disappearing logo --></div>
<div class="tagline desktoponly">
Small. Fast. Reliable.<br>Choose any three.
</div>
<div class="menu mainmenu">
<ul>
<li><a href="index.html">Home</a>
<li class='mobileonly'><a href="javascript:void(0)" onclick='toggle_div("submenu")'>Menu</a>
<li class='wideonly'><a href='about.html'>About</a>
<li class='desktoponly'><a href="docs.html">Documentation</a>
<li class='desktoponly'><a href="download.html">Download</a>
<li class='wideonly'><a href='copyright.html'>License</a>
<li class='desktoponly'><a href="support.html">Support</a>
<li class='desktoponly'><a href="prosupport.html">Purchase</a>
<li class='search' id='search_menubutton'>
<a href="javascript:void(0)" onclick='toggle_search()'>Search</a>
</ul>
</div>
<div class="menu submenu" id="submenu">
<ul>
<li><a href='about.html'>About</a>
<li><a href='docs.html'>Documentation</a>
<li><a href='download.html'>Download</a>
<li><a href='support.html'>Support</a>
<li><a href='prosupport.html'>Purchase</a>
</ul>
</div>
<div class="searchmenu" id="searchmenu">
<form method="GET" action="search">
<select name="s" id="searchtype">
<option value="d">Search Documentation</option>
<option value="c">Search Changelog</option>
</select>
<input type="text" name="q" id="searchbox" value="">
<input type="submit" value="Go">
</form>
</div>
</div>
<script>
function toggle_div(nm) {
var w = document.getElementById(nm);
if( w.style.display=="block" ){
w.style.display = "none";
}else{
w.style.display = "block";
}
}
function toggle_search() {
var w = document.getElementById("searchmenu");
if( w.style.display=="block" ){
w.style.display = "none";
} else {
w.style.display = "block";
setTimeout(function(){
document.getElementById("searchbox").focus()
}, 30);
}
}
function div_off(nm){document.getElementById(nm).style.display="none";}
window.onbeforeunload = function(e){div_off("submenu");}
/* Disable the Search feature if we are not operating from CGI, since */
/* Search is accomplished using CGI and will not work without it. */
if( !location.origin || !location.origin.match || !location.origin.match(/http/) ){
document.getElementById("search_menubutton").style.display = "none";
}
/* Used by the Hide/Show button beside syntax diagrams, to toggle the */
function hideorshow(btn,obj){
var x = document.getElementById(obj);
var b = document.getElementById(btn);
if( x.style.display!='none' ){
x.style.display = 'none';
b.innerHTML='show';
}else{
x.style.display = '';
b.innerHTML='hide';
}
return false;
}
var antiRobot = 0;
function antiRobotGo(){
if( antiRobot!=3 ) return;
antiRobot = 7;
var j = document.getElementById("mtimelink");
if(j && j.hasAttribute("data-href")) j.href=j.getAttribute("data-href");
}
function antiRobotDefense(){
document.body.onmousedown=function(){
antiRobot |= 2;
antiRobotGo();
document.body.onmousedown=null;
}
document.body.onmousemove=function(){
antiRobot |= 2;
antiRobotGo();
document.body.onmousemove=null;
}
setTimeout(function(){
antiRobot |= 1;
antiRobotGo();
}, 100)
antiRobotGo();
}
antiRobotDefense();
</script>
<div class=fancy>
<div class=nosearch>
<div class="fancy_title">
Date And Time Functions
</div>
<div class="fancy_toc">
<a onclick="toggle_toc()">
<span class="fancy_toc_mark" id="toc_mk">&#x25ba;</span>
Table Of Contents
</a>
<div id="toc_sub"><div class="fancy-toc1"><a href="#overview">1. Overview</a></div>
<div class="fancy-toc2"><a href="#timediff_">1.1. Timediff()</a></div>
<div class="fancy-toc1"><a href="#time_values">2. Time Values</a></div>
<div class="fancy-toc1"><a href="#modifiers">3. Modifiers</a></div>
<div class="fancy-toc1"><a href="#examples">4. Examples</a></div>
<div class="fancy-toc1"><a href="#caveats_and_bugs">5. Caveats And Bugs</a></div>
</div>
</div>
<script>
function toggle_toc(){
var sub = document.getElementById("toc_sub")
var mk = document.getElementById("toc_mk")
if( sub.style.display!="block" ){
sub.style.display = "block";
mk.innerHTML = "&#x25bc;";
} else {
sub.style.display = "none";
mk.innerHTML = "&#x25ba;";
}
}
</script>
</div>
<h1 id="overview"><span>1. </span>Overview</h1>
<p>
SQLite supports seven <a href="lang_corefunc.html">scalar</a> date and time functions as follows:
</p>
<p>
</p><ol>
<li> <b>date(</b><i>time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>time(</b><i>time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>datetime(</b><i>time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>julianday(</b><i>time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>unixepoch(</b><i>time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>strftime(</b><i>format, time-value, modifier, modifier, ...</i><b>)</b> </li>
<li> <b>timediff(</b><i>time-value, time-value</i><b>)</b> </li>
</ol>
<p>
The first six date and time functions take an optional time value as an argument, followed
by zero or more modifiers.
The strftime() function also takes a format string as its first argument.
The timediff() function takes exactly two arguments which are both time values.
</p>
<p>
Date and time values can be stored as
</p><ul>
<li> text in a subset of the <a href="http://en.wikipedia.org/wiki/ISO_8601">ISO-8601</a> format,
</li><li> numbers representing the <a href="http://en.wikipedia.org/wiki/Julian_day">Julian day</a>, or
</li><li> numbers representing the number of seconds since (or before) 1970-01-01 00:00:00 UTC
(the unix timestamp).
</li></ul>
<p>
All of the date time functions access time-values as either ISO-8601 strings or
Julian day numbers. They also access unix timestamps with optional arguments
(the 'auto' and 'unixepoch' modifiers described below). Since the timediff()
function does not accept any optional argument, it can only use ISO-8601 and
Julian day number time values.
<a name="dttm"></a>
</p><p>
The date() function returns the date as text in this format: YYYY-MM-DD.
<a name="dttm"></a>
</p><p>
The time() function returns the time as text in this format: HH:MM:SS.
<a name="dttm"></a>
</p><p>
The datetime() function returns the date and time as text in this formats: YYYY-MM-DD HH:MM:SS.
<a name="jlndy"></a>
</p><p>
The julianday() function returns the
<a href="http://en.wikipedia.org/wiki/Julian_day">Julian day</a> - the
fractional number of days since noon in Greenwich on November 24, 4714 B.C.
(<a href="http://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar">Proleptic Gregorian calendar</a>).
<a name="uepch"></a>
</p><p>
The unixepoch() function returns a unix timestamp - the number of seconds
since 1970-01-01 00:00:00 UTC. The unixepoch() function normally returns
an integer number of seconds, but with the optional <a href="lang_datefunc.html#subsec">subsec modifier</a> it
will return a floating point number which is the fractional number of seconds.
<a name="strftm"></a>
</p><p>
The strftime() routine returns the date formatted according to
the format string specified as the first argument.
The format string supports the most common substitutions found in the
<a href="http://opengroup.org/onlinepubs/007908799/xsh/strftime.html">strftime() function</a>
from the standard C library plus two new substitutions, %f and %J.
The following is a complete list of valid strftime() substitutions:
</p>
<blockquote>
<table border="0" cellpadding="0" cellspacing="0">
<tr><td></td><td width="10"></td><td></td></tr>
<tr><td> %d </td><td></td><td> day of month: 00-31
</td></tr><tr><td> %e </td><td></td><td> day of month without leading zero: 0-31
</td></tr><tr><td> %f </td><td></td><td> fractional seconds: SS.SSS
</td></tr><tr><td> %F </td><td></td><td> ISO 8601 date: YYYY-MM-DD
</td></tr><tr><td> %H </td><td></td><td> hour: 00-24
</td></tr><tr><td> %I </td><td></td><td> hour for 12-hour clock: 01-12
</td></tr><tr><td> %j </td><td></td><td> day of year: 001-366
</td></tr><tr><td> %J </td><td></td><td> Julian day number (fractional)
</td></tr><tr><td> %k </td><td></td><td> hour without leading zero: 0-24
</td></tr><tr><td> %l </td><td></td><td> %I without leading zero: 1-12
</td></tr><tr><td> %m </td><td></td><td> month: 01-12
</td></tr><tr><td> %M </td><td></td><td> minute: 00-59
</td></tr><tr><td> %p </td><td></td><td> "AM" or "PM" depending on the hour
</td></tr><tr><td> %P </td><td></td><td> "am" or "pm" depending on the hour
</td></tr><tr><td> %R </td><td></td><td> ISO 8601 time: HH:MM
</td></tr><tr><td> %s </td><td></td><td> seconds since 1970-01-01
</td></tr><tr><td> %S </td><td></td><td> seconds: 00-59
</td></tr><tr><td> %T </td><td></td><td> ISO 8601 time: HH:MM:SS
</td></tr><tr><td> %u </td><td></td><td> day of week 1-7 with Monday==1
</td></tr><tr><td> %w </td><td></td><td> day of week 0-6 with Sunday==0
</td></tr><tr><td> %W </td><td></td><td> week of year: 00-53
</td></tr><tr><td> %Y </td><td></td><td> year: 0000-9999
</td></tr><tr><td> %% </td><td></td><td> %
</td></tr></table>
</blockquote>
<p>
Other date and time functions can be expressed
in terms of strftime():
</p>
<blockquote>
<table border="0" cellpadding="0" cellspacing="0">
<tr><td><b>Function</b></td><td width="30"></td><td><b>Equivalent (or nearly) strftime()</b>
</td></tr><tr><td> date(...) </td><td></td><td> strftime('%F', ...)
</td></tr><tr><td> time(...) </td><td></td><td> strftime('%T', ...)
</td></tr><tr><td> datetime(...) </td><td></td><td> strftime('%F %T', ...)
</td></tr><tr><td> julianday(...) </td><td></td><td> <nobr>strftime('%J', ...) -- (numeric return)</nobr>
</td></tr><tr><td> unixepoch(...) </td><td></td><td> <nobr>strftime('%s', ...) -- (numeric return)</nobr>
</td></tr></table>
</blockquote>
<p>
The date(), time(), and datetime() functions all return text, and so their
strftime() equivalents are exact. However, the julianday()
and unixepoch() functions return numeric values. Their strftime() equivalents
return a string that is the text representation of the corresponding number.
</p>
<p>
The main reasons for providing functions other than strftime() are
for convenience and for efficiency. The julianday() and unixepoch()
functions return real and integer values respectively, and do not
incur the format conversion costs or inexactitude resulting from use
of the '%J' or '%s' format specifiers with the strftime() function.
</p>
<a name="tmdif"></a>
<h2 id="timediff_"><span>1.1. </span>Timediff()</h2>
<p>
The timediff(A,B) routine returns a string that describes the amount
of time that must be added to B in order to reach time A. The format of
the timediff() result is designed to be human-readable. The format is:
</p><blockquote>
(+|-)YYYY-MM-DD HH:MM:SS.SSS
</blockquote>
<p>
This time difference string is also an allowed modifier for the other
date/time functions. The following invariant holds for time values A
and B:
</p><blockquote>
datetime(A) = datetime(B, timediff(A,B))
</blockquote>
<p>
The length of months and years vary. February is shorter than March.
Leap years are longer than non-leap years. The output from timediff()
takes this all into account. The timediff() function is intended to provide
a human-friendly description of the time span. If you want to know the
number of days or seconds between two dates, A and B, then you can always do
one of these:
</p><blockquote>
SELECT julianday(B) - julianday(A);<br>
SELECT unixepoch(B) - unixepoch(A);
</blockquote>
<p>
The timediff(A,B) might return the same result even for values A and B
that span a different number of days - depending on the starting date.
For example, both of the following two timediff() calls return the
same result ("+0000-01-00 00:00:00.000") even though the first timespan
is 28 days and the seconds is 31 days:
</p><blockquote>
SELECT timediff('2023-02-15','2023-03-15');<br>
SELECT timediff('2023-03-15','2023-04-15');
</blockquote>
<p>
Summary: If you want a human-friendly time span, use timediff(). If you
what a precise time difference (in days or seconds) use the difference
between two julianday() or unixepoch() calls.
</p>
<h1 id="time_values"><span>2. </span>Time Values</h1>
<p>A time value can be in any of the following formats shown below.
The value is usually a string, though it can be an integer or floating
point number in the case of format 12.
</p><ol>
<li> <i>YYYY-MM-DD</i>
</li><li> <i>YYYY-MM-DD HH:MM</i>
</li><li> <i>YYYY-MM-DD HH:MM:SS</i>
</li><li> <i>YYYY-MM-DD HH:MM:SS.SSS</i>
</li><li> <i>YYYY-MM-DD</i><b>T</b><i>HH:MM</i>
</li><li> <i>YYYY-MM-DD</i><b>T</b><i>HH:MM:SS</i>
</li><li> <i>YYYY-MM-DD</i><b>T</b><i>HH:MM:SS.SSS</i>
</li><li> <i>HH:MM</i>
</li><li> <i>HH:MM:SS</i>
</li><li> <i>HH:MM:SS.SSS</i>
</li><li> <b>now</b>
</li><li> <i>DDDDDDDDDD</i>
</li></ol>
<p>
In formats 5 through 7, the "T" is a literal character separating
the date and the time, as required by
<a href="http://www.w3c.org/TR/NOTE-datetime">ISO-8601</a>.
Formats 8 through 10 that specify only a time assume a date of
2000-01-01. Format 11, the string 'now', is converted into the
current date and time as obtained from the xCurrentTime method
of the <a href="c3ref/vfs.html">sqlite3_vfs</a> object in use.
The 'now' argument to date and time functions always returns exactly the
same value for multiple invocations within the same <a href="c3ref/step.html">sqlite3_step()</a> call.
<a href="http://en.wikipedia.org/wiki/Coordinated_Universal_Time">Universal Coordinated Time (UTC)</a> is used.
Format 12 is the
<a href="http://en.wikipedia.org/wiki/Julian_day">Julian day number</a>
expressed as an integer or floating point value.
Format 12 might also be interpreted as a unix timestamp if it is immediately followed
either the 'auto' or 'unixepoch' modifier.
</p>
<p>
Formats 2 through 10 may be optionally followed by a timezone indicator of the form
"<i>&#91;+-&#93;HH:MM</i>" or just "<i>Z</i>". The date and time functions use UTC or "zulu"
time internally, and so the "Z" suffix is a no-op. Any non-zero "HH:MM" suffix is
subtracted from the indicated date and time in order to compute zulu time.
For example, all of the following time values are equivalent:
</p>
<blockquote>
2013-10-07 08:23:19.120<br>
2013-10-07T08:23:19.120Z<br>
2013-10-07 04:23:19.120-04:00<br>
2456572.84952685
</blockquote>
<p>
In formats 4, 7, and 10, the fractional seconds value SS.SSS can have
one or more digits following the decimal point. Exactly three digits are
shown in the examples because only the first three digits are significant
to the result, but the input string can have fewer or more than three digits
and the date/time functions will still operate correctly.
Similarly, format 12 is shown with 10 significant digits, but the date/time
functions will really accept as many or as few digits as are necessary to
represent the Julian day number.
</p>
<p>
In all functions other than timediff(),
the time-value (and all modifiers) may be omitted, in which case a time
value of 'now' is assumed.
<a name="dtmods"></a>
</p><h1 id="modifiers"><span>3. </span>Modifiers</h1>
<p>For all date/time functions other than timediff(),
the time value argument can be followed by zero or more modifiers that
alter date and/or time. Each modifier
is a transformation that is applied to the time value to its left.
Modifiers are applied from left to right; order is important.
The available modifiers are as follows.</p>
<ol>
<li value="1"> NNN days
</li><li value="2"> NNN hours
</li><li value="3"> NNN minutes
</li><li value="4"> NNN seconds
</li><li value="5"> NNN months
</li><li value="6"> NNN years
</li><li value="7"> &plusmn;HH:MM
</li><li value="8"> &plusmn;HH:MM:SS
</li><li value="9"> &plusmn;HH:MM:SS.SSS
</li><li value="10"> &plusmn;YYYY-MM-DD
</li><li value="11"> &plusmn;YYYY-MM-DD HH:MM
</li><li value="12"> &plusmn;YYYY-MM-DD HH:MM:SS
</li><li value="13"> &plusmn;YYYY-MM-DD HH:MM:SS.SSS
</li><li value="14"> start of month
</li><li value="15"> start of year
</li><li value="16"> start of day
</li><li value="17"> weekday N
</li><li value="18"> unixepoch
</li><li value="19"> julianday
</li><li value="20"> auto
</li><li value="21"> localtime
</li><li value="22"> utc
</li><li value="23"> subsec
</li><li value="24"> subsecond
</li></ol>
<p>The first thirteen modifiers (1 through 13)
add the specified amount of time to the date and time
specified by the arguments to its left.
The 's' character at the end of the modifier names in 1 through 6 is optional.
The NNN value can be any floating point number, with an optional '+' or '-' prefix.
Note that "&plusmn;NNN months" works by rendering the original date into
the YYYY-MM-DD format, adding the &plusmn;NNN to the MM month value, then
normalizing the result. Thus, for example, the date 2001-03-31 modified
by '+1 month' initially yields 2001-04-31, but April only has 30 days
so the date is normalized to 2001-05-01. A similar effect occurs when
the original date is February 29 of a leapyear and the modifier is
&plusmn;N years where N is not a multiple of four.</p>
<a name="tmshf"></a>
<p>The time shift modifiers (7 through 13) move the time value by the
number of years, months, days, hours, minutes, and/or seconds specified.
An initial "+" or "-" is required for formats 10 through 13 but is optional
for formats 7, 8, and 9. The changes are applies from left to right.
First the year is shifted by YYYY, then the month by MM, and then day
by DD, and so forth. The normalization and rounding due to differing month
lengths and leap years is applied after each step. The
timediff(A,B) function returns a time shift in format 13 that shifts
the time value B into A.</p>
<p>The "start of" modifiers (14 through 16) shift the date backwards
to the beginning of the subject month, year or day.</p>
<p>The "weekday" modifier advances the date forward, if necessary,
to the next date where the weekday number is N. Sunday is 0, Monday is 1,
and so forth.
If the date is already on the desired weekday, the "weekday" modifier
leaves the date unchanged. </p>
<p>The "unixepoch" modifier (18) only works if it immediately follows
a time value in the DDDDDDDDDD format.
This modifier causes the DDDDDDDDDD to be interpreted not
as a Julian day number as it normally would be, but as
<a href="http://en.wikipedia.org/wiki/Unix_time">Unix Time</a> - the
number of seconds since 1970. If the "unixepoch" modifier does not
follow a time value of the form DDDDDDDDDD which expresses the number
of seconds since 1970 or if other modifiers
separate the "unixepoch" modifier from prior DDDDDDDDDD then the
behavior is undefined.
For SQLite versions before 3.16.0 (2017-01-02),
the "unixepoch" modifier only works for
dates between 0000-01-01 00:00:00 and 5352-11-01 10:52:47 (unix times
of -62167219200 through 106751991167).</p>
<a name="jdmod"></a>
<p>The "julianday" modifier must immediately follow the initial
time-value which must be of the form DDDDDDDDD. Any other use of
the 'julianday' modifier is an error and causes the function to return NULL.
The 'julianday' modifier forces the time-value number to be interpreted
as a julian-day number. As this is the default behavior, the 'julianday'
modifier is scarcely more than a no-op. The only difference is that
adding 'julianday' forces the DDDDDDDDD time-value format, and causes
a NULL to be returned if any other time-value format is used.
<a name="automod"></a>
</p><p>The "auto" modifier must immediately follow the initial time-value.
If the time-value is numeric (the DDDDDDDDDD format) then the 'auto'
modifier causes the time-value to interpreted as either a julian day
number or a unix timestamp, depending on its magnitude. If the value
is between 0.0 and 5373484.499999, then it is interpreted as a julian
day number (corresponding to dates between
-4713-11-24 12:00:00 and 9999-12-31 23:59:59, inclusive). For numeric
values outside of the range of valid julian day numbers, but within
the range of -210866760000 to 253402300799, the 'auto' modifier causes
the value to be interpreted as a unix timestamp. Other numeric values
are out of range and cause a NULL return. The 'auto' modifier is a no-op
for text time-values.
</p><p>The 'auto' modifier can be used to work with date/time values even in
cases where it is not known if the julian day number or unix timestamp
formats are in use. The 'auto' modifier will automatically select the
appropriate format. However, there is a region of ambiguity. Unix
timestamps for the first 63 days of 1970 will be interpreted as julian
day numbers. The 'auto' modifier is very useful when the dataset is
guaranteed to not contain any dates within that region, but should be
avoided for applications that might make use of dates in the opening
months of 1970.
<a name="localtime"></a>
</p><p>The "localtime" modifier (21) assumes the time value to its left is in
Universal Coordinated Time (UTC) and adjusts that time
value so that it is in localtime. If "localtime"
follows a time that is not UTC, then the behavior is undefined.
The "utc" modifier is the opposite of "localtime".
"utc" assumes that the time value
to its left is in the local timezone and adjusts that time value to be in UTC.
If the time to the left is not in localtime, then the result of "utc" is
undefined.</p>
<a name="subsec"></a>
<p>
The "subsecond" modifier (which may be abbreviated as just
"subsec") increases the resolution of the output for
<a href="lang_datefunc.html#dttm">datetime()</a>, <a href="lang_datefunc.html#dttm">time()</a>, and <a href="lang_datefunc.html#uepch">unixepoch()</a>, and for the "%s"
format string in <a href="lang_datefunc.html#strftm">strftime()</a>. The "subsecond"
modifier has no effect on other date/time functions.
The current implemention increases the resolution from seconds
to milliseconds, but this might increase to a higher resolution
in future releases of SQLite. When "subsec" is used with
<a href="lang_datefunc.html#dttm">datetime()</a> or <a href="lang_datefunc.html#dttm">time()</a>, the seconds field at the end is
followed by a decimal point and one or more digits to show
fractional seconds. When "subsec" is used with <a href="lang_datefunc.html#uepch">unixepoch()</a>,
the result is a floating point value which is the number of
seconds and fractional seconds since 1970-01-01.
</p><p>
The "subsecond" and "subsec" modifiers have the special property
that they can occur as the first argument to date/time functions
(or as the first argument after the format string for strftime()).
When this happens, the time value that is normally in the first
argument is understood to be "now". For example, a short cut to
get the current time in seconds since 1970 with millisecond
precision is to say:
</p><blockquote>
SELECT unixepoch('subsec');
</blockquote>
<h1 id="examples"><span>4. </span>Examples</h1>
<p>Compute the current date.</p><p>
</p><blockquote>SELECT date();</blockquote>
<p>Compute the last day of the current month.</p>
<blockquote>SELECT date('now','start of month','+1 month','-1 day');
</blockquote>
<p>Compute the date and time given a unix timestamp 1092941466.</p>
<blockquote>
SELECT datetime(1092941466, 'unixepoch');<br>
SELECT datetime(1092941466, 'auto'); -- Does not work for early 1970!
</blockquote>
<p>Compute the date and time given a unix timestamp 1092941466, and
compensate for your local timezone.</p>
<blockquote>
SELECT datetime(1092941466, 'unixepoch', 'localtime');
</blockquote>
<p>Compute the current unix timestamp.</p>
<blockquote>
SELECT unixepoch();<br>
SELECT strftime('%s');
</blockquote>
<p>Compute the number of days since the signing of the US Declaration
of Independence.</p>
<blockquote>
SELECT julianday('now') - julianday('1776-07-04');
</blockquote>
<p>Compute the number of seconds since a particular moment in 2004:</p>
<blockquote>
SELECT unixepoch() - unixepoch('2004-01-01 02:34:56');
</blockquote>
<p>
Compute the date of the first Tuesday in October
for the current year.
</p>
<blockquote>
SELECT date('now','start of year','+9 months','weekday 2');
</blockquote>
<p>Compute the time since the unix epoch in seconds with
millisecond precision:</p>
<blockquote>
SELECT (julianday('now') - 2440587.5)*86400.0;<br>
SELECT unixepoch('now','subsec');
</blockquote>
<p>Compute how old Abraham Lincoln would be if he were still alive today:</p>
<blockquote>
SELECT timediff('now','1809-02-12');
</blockquote>
<h1 id="caveats_and_bugs"><span>5. </span>Caveats And Bugs</h1>
<p>The computation of local time depends heavily on the whim
of politicians and is thus difficult to get correct for
all locales. In this implementation, the standard C library
function localtime_r() is used to assist in the calculation of
local time. The
localtime_r() C function normally only works for years
between 1970 and 2037. For dates outside this range, SQLite
attempts to map the year into an equivalent year within
this range, do the calculation, then map the year back.</p>
<p>These functions only work for dates between 0000-01-01 00:00:00
and 9999-12-31 23:59:59 (julian day numbers 1721059.5 through 5373484.5).
For dates outside that range, the results of these
functions are undefined.</p>
<p>Non-Vista Windows platforms only support one set of DST rules.
Vista only supports two. Therefore, on these platforms,
historical DST calculations will be incorrect.
For example, in the US, in 2007 the DST rules changed.
Non-Vista Windows platforms apply the new 2007 DST rules
to all previous years as well. Vista does somewhat better
getting results correct back to 1986, when the rules were also changed.</p>
<p>All internal computations assume the
<a href="http://en.wikipedia.org/wiki/Gregorian_calendar">Gregorian calendar</a>
system. They also assume that every
day is exactly 86400 seconds in duration; no leap seconds are incorporated.</p>
<p align="center"><small><i>This page last modified on <a href="https://sqlite.org/docsrc/honeypot" id="mtimelink" data-href="https://sqlite.org/docsrc/finfo/pages/lang_datefunc.in?m=5409636a72">2023-10-26 01:12:18</a> UTC </small></i></p>