1683 lines
No EOL
53 KiB
HTML
1683 lines
No EOL
53 KiB
HTML
<!DOCTYPE HTML>
|
|
<HTML LANG="en-us"
|
|
><HEAD
|
|
><TITLE
|
|
>asin, acos, atan | Common Lisp Nova Spec</TITLE
|
|
><META CHARSET="US-ASCII"
|
|
><LINK REL="canonical" HREF="f_asin.html"
|
|
><LINK REL="next" HREF="v_pi.html" TYPE="text/html" TITLE="pi"
|
|
><LINK REL="prev" HREF="f_sin.html" TYPE="text/html" TITLE="sin, cos, tan"
|
|
><LINK REL="up" HREF="12_2_Numbers_Dictionary.html" TYPE="text/html" TITLE="12.2 Numbers Dictionary"
|
|
><LINK REL="start" HREF="index.html" TYPE="text/html" TITLE="Common Lisp Nova Spec"
|
|
><META NAME="VIEWPORT" CONTENT="width=device-width, initial-scale=1.0"
|
|
><LINK REL="STYLESHEET" HREF="dpans.css%3F3909942064.css"
|
|
><SCRIPT SRC="dpans.js%3F3909942064"
|
|
></SCRIPT
|
|
><SCRIPT SRC="apropos.js%3F3909942064"
|
|
></SCRIPT
|
|
><STYLE
|
|
>@font-face { font-family: 'cmr7'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr7.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmex10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmex10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
#G24 { position:absolute;left:0.000pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G24:before {display:inline-block;content:'';height:11.680pt }
|
|
#G25 { position:absolute;left:9.333pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G25:before {display:inline-block;content:'';height:11.680pt }
|
|
#G26 { position:absolute;left:17.468pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G26:before {display:inline-block;content:'';height:11.680pt }
|
|
#G27 { position:absolute;left:38.477pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G27:before {display:inline-block;content:'';height:1.960pt }
|
|
#G28 { position:absolute;left:43.977pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G28:before {display:inline-block;content:'';height:11.680pt }
|
|
#G29 { position:absolute;left:57.636pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G29:before {display:inline-block;content:'';height:11.680pt }
|
|
#G30 { position:absolute;left:69.636pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G30:before {display:inline-block;content:'';height:1.680pt }
|
|
#G31 { position:absolute;left:79.636pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G31:before {display:inline-block;content:'';height:11.680pt }
|
|
#G32 { position:absolute;left:88.303pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G32:before {display:inline-block;content:'';height:11.680pt }
|
|
#G33 { position:absolute;left:100.303pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G33:before {display:inline-block;content:'';height:11.680pt }
|
|
#G34 { position:absolute;left:107.161pt;top:0;font-family:'cmr7';font-size:8.400pt;line-height:0;}
|
|
#G34:before {display:inline-block;content:'';height:8.213pt }
|
|
#G35 { position:absolute;left:112.545pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G35:before {display:inline-block;content:'';height:1.960pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
#G36 { position:absolute;left:0.000pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G36:before {display:inline-block;content:'';height:10.200pt }
|
|
#G37 { position:absolute;left:4.667pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G37:before {display:inline-block;content:'';height:10.200pt }
|
|
#G38 { position:absolute;left:11.938pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G38:before {display:inline-block;content:'';height:10.200pt }
|
|
#G39 { position:absolute;left:17.938pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G39:before {display:inline-block;content:'';height:10.200pt }
|
|
#G40 { position:absolute;left:31.271pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G40:before {display:inline-block;content:'';height:10.200pt }
|
|
#G41 { position:absolute;left:43.271pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G41:before {display:inline-block;content:'';height:10.200pt }
|
|
#G42 { position:absolute;left:81.290pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G42:before {display:inline-block;content:'';height:10.200pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmr7'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr7.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmex10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmex10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
#G43 { position:absolute;left:0.000pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G43:before {display:inline-block;content:'';height:11.940pt }
|
|
#G44 { position:absolute;left:9.333pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G44:before {display:inline-block;content:'';height:11.940pt }
|
|
#G45 { position:absolute;left:17.468pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G45:before {display:inline-block;content:'';height:11.940pt }
|
|
#G46 { position:absolute;left:38.477pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G46:before {display:inline-block;content:'';height:2.220pt }
|
|
#G47 { position:absolute;left:43.977pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G47:before {display:inline-block;content:'';height:11.940pt }
|
|
#G48 { position:absolute;left:57.311pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G48:before {display:inline-block;content:'';height:11.940pt }
|
|
#G49 { position:absolute;left:69.311pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G49:before {display:inline-block;content:'';height:11.940pt }
|
|
#G50 { position:absolute;left:80.303pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G50:before {display:inline-block;content:'';height:11.940pt }
|
|
#G51 { position:absolute;left:88.970pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G51:before {display:inline-block;content:'';height:1.680pt }
|
|
#G52 { position:absolute;left:100.970pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G52:before {display:inline-block;content:'';height:11.940pt }
|
|
#G53 { position:absolute;left:106.970pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G53:before {display:inline-block;content:'';height:11.940pt }
|
|
#G54 { position:absolute;left:112.970pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G54:before {display:inline-block;content:'';height:11.940pt }
|
|
#G55 { position:absolute;left:126.303pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G55:before {display:inline-block;content:'';height:11.940pt }
|
|
#G56 { position:absolute;left:138.303pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G56:before {display:inline-block;content:'';height:11.940pt }
|
|
#G57 { position:absolute;left:145.161pt;top:0;font-family:'cmr7';font-size:8.400pt;line-height:0;}
|
|
#G57:before {display:inline-block;content:'';height:8.473pt }
|
|
#G58 { position:absolute;left:150.545pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G58:before {display:inline-block;content:'';height:11.940pt }
|
|
#G59 { position:absolute;left:155.211pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G59:before {display:inline-block;content:'';height:2.220pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmr7'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr7.ttf') }
|
|
@font-face { font-family: 'cmex10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmex10.ttf') }
|
|
@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
#G60 { position:absolute;left:0.000pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G60:before {display:inline-block;content:'';height:15.000pt }
|
|
#G61 { position:absolute;left:38.020pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G61:before {display:inline-block;content:'';height:15.000pt }
|
|
#G62 { position:absolute;left:47.461pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G62:before {display:inline-block;content:'';height:15.000pt }
|
|
#G63 { position:absolute;left:60.128pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G63:before {display:inline-block;content:'';height:15.000pt }
|
|
#G64 { position:absolute;left:69.461pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G64:before {display:inline-block;content:'';height:15.000pt }
|
|
#G65 { position:absolute;left:77.595pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G65:before {display:inline-block;content:'';height:15.000pt }
|
|
#G66 { position:absolute;left:98.605pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G66:before {display:inline-block;content:'';height:1.680pt }
|
|
#G67 { position:absolute;left:105.772pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G67:before {display:inline-block;content:'';height:15.000pt }
|
|
#G68 { position:absolute;left:118.681pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G68:before {display:inline-block;content:'';height:15.000pt }
|
|
#G69 { position:absolute;left:130.681pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G69:before {display:inline-block;content:'';height:3.214pt }
|
|
#G70 { position:absolute;left:142.681pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G70:before {display:inline-block;content:'';height:15.000pt }
|
|
#G71 { position:absolute;left:151.348pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G71:before {display:inline-block;content:'';height:15.000pt }
|
|
#G72 { position:absolute;left:163.347pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G72:before {display:inline-block;content:'';height:15.000pt }
|
|
#G73 { position:absolute;left:169.456pt;top:0;font-family:'cmr7';font-size:8.400pt;line-height:0;}
|
|
#G73:before {display:inline-block;content:'';height:11.533pt }
|
|
#G74 { position:absolute;left:174.839pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G74:before {display:inline-block;content:'';height:1.680pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
#G75 { position:absolute;left:0.000pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G75:before {display:inline-block;content:'';height:14.485pt }
|
|
#G76 { position:absolute;left:38.020pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G76:before {display:inline-block;content:'';height:14.485pt }
|
|
#G77 { position:absolute;left:47.461pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G77:before {display:inline-block;content:'';height:14.485pt }
|
|
#G78 { position:absolute;left:61.568pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G78:before {display:inline-block;content:'';height:6.367pt }
|
|
#G79 { position:absolute;left:62.203pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G79:before {display:inline-block;content:'';height:22.716pt }
|
|
#G80 { position:absolute;left:72.945pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G80:before {display:inline-block;content:'';height:14.485pt }
|
|
#G81 { position:absolute;left:84.945pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G81:before {display:inline-block;content:'';height:14.485pt }
|
|
#G82 { position:absolute;left:122.965pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G82:before {display:inline-block;content:'';height:14.485pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmr7'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr7.ttf') }
|
|
@font-face { font-family: 'cmex10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmex10.ttf') }
|
|
@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
#G83 { position:absolute;left:0.000pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G83:before {display:inline-block;content:'';height:15.000pt }
|
|
#G84 { position:absolute;left:38.020pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G84:before {display:inline-block;content:'';height:15.000pt }
|
|
#G85 { position:absolute;left:47.461pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G85:before {display:inline-block;content:'';height:15.000pt }
|
|
#G86 { position:absolute;left:60.128pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G86:before {display:inline-block;content:'';height:15.000pt }
|
|
#G87 { position:absolute;left:69.461pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G87:before {display:inline-block;content:'';height:15.000pt }
|
|
#G88 { position:absolute;left:77.595pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G88:before {display:inline-block;content:'';height:15.000pt }
|
|
#G89 { position:absolute;left:98.605pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G89:before {display:inline-block;content:'';height:1.680pt }
|
|
#G90 { position:absolute;left:105.772pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G90:before {display:inline-block;content:'';height:15.000pt }
|
|
#G91 { position:absolute;left:114.547pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G91:before {display:inline-block;content:'';height:15.000pt }
|
|
#G92 { position:absolute;left:126.547pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G92:before {display:inline-block;content:'';height:15.000pt }
|
|
#G93 { position:absolute;left:134.681pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G93:before {display:inline-block;content:'';height:3.214pt }
|
|
#G94 { position:absolute;left:146.681pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G94:before {display:inline-block;content:'';height:15.000pt }
|
|
#G95 { position:absolute;left:155.348pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G95:before {display:inline-block;content:'';height:15.000pt }
|
|
#G96 { position:absolute;left:167.347pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G96:before {display:inline-block;content:'';height:15.000pt }
|
|
#G97 { position:absolute;left:173.456pt;top:0;font-family:'cmr7';font-size:8.400pt;line-height:0;}
|
|
#G97:before {display:inline-block;content:'';height:11.533pt }
|
|
#G98 { position:absolute;left:178.839pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G98:before {display:inline-block;content:'';height:1.680pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmex10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmex10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
#G99 { position:absolute;left:0.000pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G99:before {display:inline-block;content:'';height:20.820pt }
|
|
#G100 { position:absolute;left:38.020pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G100:before {display:inline-block;content:'';height:20.820pt }
|
|
#G101 { position:absolute;left:47.461pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G101:before {display:inline-block;content:'';height:20.820pt }
|
|
#G102 { position:absolute;left:61.568pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G102:before {display:inline-block;content:'';height:11.940pt }
|
|
#G103 { position:absolute;left:71.568pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G103:before {display:inline-block;content:'';height:11.940pt }
|
|
#G104 { position:absolute;left:92.578pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G104:before {display:inline-block;content:'';height:2.220pt }
|
|
#G105 { position:absolute;left:98.078pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G105:before {display:inline-block;content:'';height:1.680pt }
|
|
#G106 { position:absolute;left:110.078pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G106:before {display:inline-block;content:'';height:11.940pt }
|
|
#G107 { position:absolute;left:123.411pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G107:before {display:inline-block;content:'';height:11.940pt }
|
|
#G108 { position:absolute;left:135.411pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G108:before {display:inline-block;content:'';height:11.940pt }
|
|
#G109 { position:absolute;left:141.519pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G109:before {display:inline-block;content:'';height:11.940pt }
|
|
#G110 { position:absolute;left:146.186pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G110:before {display:inline-block;content:'';height:11.940pt }
|
|
#G111 { position:absolute;left:152.186pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G111:before {display:inline-block;content:'';height:11.940pt }
|
|
#G112 { position:absolute;left:160.853pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G112:before {display:inline-block;content:'';height:11.940pt }
|
|
#G113 { position:absolute;left:172.853pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G113:before {display:inline-block;content:'';height:11.940pt }
|
|
#G114 { position:absolute;left:180.987pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G114:before {display:inline-block;content:'';height:1.680pt }
|
|
#G115 { position:absolute;left:192.987pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G115:before {display:inline-block;content:'';height:11.940pt }
|
|
#G116 { position:absolute;left:206.320pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G116:before {display:inline-block;content:'';height:11.940pt }
|
|
#G117 { position:absolute;left:218.320pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G117:before {display:inline-block;content:'';height:11.940pt }
|
|
#G118 { position:absolute;left:224.428pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G118:before {display:inline-block;content:'';height:11.940pt }
|
|
#G119 { position:absolute;left:229.095pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G119:before {display:inline-block;content:'';height:11.940pt }
|
|
#G120 { position:absolute;left:235.095pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G120:before {display:inline-block;content:'';height:11.940pt }
|
|
#G121 { position:absolute;left:241.095pt;top:0;font-family:'cmex10';font-size:12.000pt;line-height:0;}
|
|
#G121:before {display:inline-block;content:'';height:2.220pt }
|
|
#G122 { position:absolute;left:152.014pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G122:before {display:inline-block;content:'';height:29.051pt }
|
|
</STYLE
|
|
><STYLE
|
|
>@font-face { font-family: 'cmsy10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmsy10.ttf') }
|
|
@font-face { font-family: 'cmr10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmr10.ttf') }
|
|
@font-face { font-family: 'cmmi10'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmmi10.ttf') }
|
|
@font-face { font-family: 'cmtt9'; src: url('https://novaspec.org/cl/fonts/bakoma/ttf/cmtt9.ttf') }
|
|
#G123 { position:absolute;left:0.000pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G123:before {display:inline-block;content:'';height:18.318pt }
|
|
#G124 { position:absolute;left:38.020pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G124:before {display:inline-block;content:'';height:18.318pt }
|
|
#G125 { position:absolute;left:47.461pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G125:before {display:inline-block;content:'';height:18.318pt }
|
|
#G126 { position:absolute;left:61.568pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G126:before {display:inline-block;content:'';height:10.200pt }
|
|
#G127 { position:absolute;left:82.578pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G127:before {display:inline-block;content:'';height:10.200pt }
|
|
#G128 { position:absolute;left:95.911pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G128:before {display:inline-block;content:'';height:10.200pt }
|
|
#G129 { position:absolute;left:107.911pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G129:before {display:inline-block;content:'';height:10.200pt }
|
|
#G130 { position:absolute;left:118.153pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G130:before {display:inline-block;content:'';height:10.200pt }
|
|
#G131 { position:absolute;left:125.487pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G131:before {display:inline-block;content:'';height:10.200pt }
|
|
#G132 { position:absolute;left:137.487pt;top:0;font-family:'cmtt9';font-size:10.800pt;line-height:0;}
|
|
#G132:before {display:inline-block;content:'';height:10.200pt }
|
|
#G133 { position:absolute;left:158.496pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G133:before {display:inline-block;content:'';height:10.200pt }
|
|
#G134 { position:absolute;left:171.830pt;top:0;font-family:'cmsy10';font-size:12.000pt;line-height:0;}
|
|
#G134:before {display:inline-block;content:'';height:10.200pt }
|
|
#G135 { position:absolute;left:183.830pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G135:before {display:inline-block;content:'';height:10.200pt }
|
|
#G136 { position:absolute;left:194.072pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G136:before {display:inline-block;content:'';height:10.200pt }
|
|
#G137 { position:absolute;left:125.086pt;top:0;font-family:'cmr10';font-size:12.000pt;line-height:0;}
|
|
#G137:before {display:inline-block;content:'';height:26.549pt }
|
|
#G138 { position:absolute;left:131.086pt;top:0;font-family:'cmmi10';font-size:12.000pt;line-height:0;}
|
|
#G138:before {display:inline-block;content:'';height:26.549pt }
|
|
</STYLE
|
|
></HEAD
|
|
><BODY
|
|
><DIV
|
|
><DIV CLASS="topnav"
|
|
><DIV CLASS="breadcrumb"
|
|
><SPAN CLASS="breadcrumb-item"
|
|
><A HREF="index.html"
|
|
>Common Lisp Nova Spec</A
|
|
></SPAN
|
|
> <SPAN CLASS="breadcrumb-item"
|
|
>→ <A HREF="12_Numbers.html"
|
|
>12. Numbers</A
|
|
></SPAN
|
|
> <SPAN CLASS="breadcrumb-item"
|
|
>→ <A HREF="12_2_Numbers_Dictionary.html"
|
|
>12.2 Numbers Dictionary</A
|
|
></SPAN
|
|
> <SPAN CLASS="breadcrumb-item"
|
|
>→ <A HREF="f_asin.html"
|
|
>asin, acos, atan</A
|
|
></SPAN
|
|
></DIV
|
|
><DIV CLASS="apropos"
|
|
><DIV CLASS="apropos-io"
|
|
><A HREF="f_sin.html" CLASS="prev"
|
|
>←</A
|
|
><SPAN ID="apropos-label"
|
|
>Apropos </SPAN
|
|
><INPUT ID="apropos" AUTOFOCUS="AUTOFOCUS" PLACEHOLDER="Type here to search" ONINPUT="aproposInput(this);" ONKEYUP="aproposKeyup(event);" ONCHANGE="aproposChange(this);" ONFOCUS="aproposFocus(this);" ONFOCUSOUT="aproposFocusout(this);"
|
|
><A HREF="v_pi.html" CLASS="next"
|
|
>→</A
|
|
></DIV
|
|
><DIV ID="apropos-res"
|
|
></DIV
|
|
></DIV
|
|
></DIV
|
|
><DIV CLASS="matter"
|
|
><DIV CLASS="com"
|
|
><DIV CLASS="begincom"
|
|
><HR
|
|
><TABLE WIDTH="100%" CELLSPACING="0" CELLPADDING="0"
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" WIDTH="100%" CLASS="name"
|
|
><SPAN CLASS="idx" DATA-KIND="idxref" DATA-TERM="asin, acos, atan"
|
|
></SPAN
|
|
><B
|
|
>asin, acos, atan</B
|
|
></TD
|
|
><TD ALIGN="RIGHT" VALIGN="BASELINE" WIDTH="0" NOWRAP="NOWRAP" CLASS="ftype"
|
|
><I
|
|
>Function</I
|
|
></TD
|
|
></TR
|
|
></TABLE
|
|
><HR
|
|
></DIV
|
|
><UL CLASS="subtoc"
|
|
></UL
|
|
><DL
|
|
><DT
|
|
><B
|
|
>Syntax</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
><B
|
|
>asin</B
|
|
> <SPAN CLASS="cmssi"
|
|
>number</SPAN
|
|
> <SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
> <SPAN CLASS="cmssi"
|
|
>radians</SPAN
|
|
></P
|
|
><P CLASS="j"
|
|
><B
|
|
>acos</B
|
|
> <SPAN CLASS="cmssi"
|
|
>number</SPAN
|
|
> <SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
> <SPAN CLASS="cmssi"
|
|
>radians</SPAN
|
|
></P
|
|
><P CLASS="j"
|
|
><B
|
|
>atan</B
|
|
> <SPAN CLASS="cmssi"
|
|
>number1</SPAN
|
|
> <SPAN CLASS="cmtt"
|
|
>&optional</SPAN
|
|
> <SPAN CLASS="cmssi"
|
|
>number2</SPAN
|
|
> <SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
> <SPAN CLASS="cmssi"
|
|
>radians</SPAN
|
|
></P
|
|
></DD
|
|
><DT
|
|
><B
|
|
>Arguments and Values</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
><VAR CLASS="param"
|
|
>number</VAR
|
|
> — a <A HREF="26_1_Glossary.html#number"
|
|
><EM CLASS="term"
|
|
>number</EM
|
|
></A
|
|
>. </P
|
|
><P CLASS="j"
|
|
><VAR CLASS="param"
|
|
>number1</VAR
|
|
> — a <A HREF="26_1_Glossary.html#number"
|
|
><EM CLASS="term"
|
|
>number</EM
|
|
></A
|
|
> if <VAR CLASS="param"
|
|
>number2</VAR
|
|
> is not supplied, or a <EM CLASS="term"
|
|
>real</EM
|
|
> if <VAR CLASS="param"
|
|
>number2</VAR
|
|
> is supplied. </P
|
|
><P CLASS="j"
|
|
><VAR CLASS="param"
|
|
>number2</VAR
|
|
> — a <EM CLASS="term"
|
|
>real</EM
|
|
>. </P
|
|
><P CLASS="j"
|
|
><VAR CLASS="param"
|
|
>radians</VAR
|
|
> — a <A HREF="26_1_Glossary.html#number"
|
|
><EM CLASS="term"
|
|
>number</EM
|
|
></A
|
|
> (of radians).</P
|
|
></DD
|
|
><DT
|
|
><B
|
|
>Description</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
><A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>asin</B
|
|
></A
|
|
>, <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>acos</B
|
|
></A
|
|
>, and <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
> compute the arc sine, arc cosine, and arc tangent respectively. </P
|
|
><P CLASS="j"
|
|
>The arc sine, arc cosine, and arc tangent (with only <VAR CLASS="param"
|
|
>number1</VAR
|
|
> supplied) functions can be defined mathematically for <VAR CLASS="param"
|
|
>number</VAR
|
|
> or <VAR CLASS="param"
|
|
>number1</VAR
|
|
> specified as <I CLASS="i"
|
|
><I
|
|
>x</I
|
|
></I
|
|
> as in Figure 12–14.</P
|
|
><FIGURE CLASS="boxfig"
|
|
><DIV CLASS="figbody"
|
|
><TABLE CELLSPACING="0" CELLPADDING="0" RULES="GROUPS" STYLE="margin: 1ex 0" WIDTH="100%"
|
|
><THEAD
|
|
><TR
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
><B
|
|
>Function</B
|
|
></TH
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <B
|
|
>Definition</B
|
|
></TH
|
|
></TR
|
|
></THEAD
|
|
><TBODY
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Arc</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>sine</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN STYLE="display:inline-block;position:relative;width:118.045pt;height:17.080pt;vertical-align:-5.400pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G24"
|
|
>¡</SPAN
|
|
><SPAN ID="G25"
|
|
>i</SPAN
|
|
><SPAN ID="G26"
|
|
>log</SPAN
|
|
><SPAN ID="G27"
|
|
>¡</SPAN
|
|
><SPAN ID="G28"
|
|
>ix</SPAN
|
|
><SPAN ID="G29"
|
|
>+</SPAN
|
|
><SPAN ID="G30"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:79.636pt;top:0.720pt;width:32.908pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G31"
|
|
>1</SPAN
|
|
><SPAN ID="G32"
|
|
>¡</SPAN
|
|
><SPAN ID="G33"
|
|
>x</SPAN
|
|
><SPAN ID="G34"
|
|
>2</SPAN
|
|
><SPAN ID="G35"
|
|
>¢</SPAN
|
|
></SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Arc</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>cosine</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN STYLE="display:inline-block;position:relative;width:88.149pt;height:14.400pt;vertical-align:-4.200pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G36"
|
|
>(</SPAN
|
|
><SPAN ID="G37"
|
|
>¼</SPAN
|
|
><SPAN ID="G38"
|
|
>=</SPAN
|
|
><SPAN ID="G39"
|
|
>2)</SPAN
|
|
><SPAN ID="G40"
|
|
>¡</SPAN
|
|
><SPAN ID="G41"
|
|
>arcsin</SPAN
|
|
><SPAN ID="G42"
|
|
>x</SPAN
|
|
></SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Arc</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>tangent</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN STYLE="display:inline-block;position:relative;width:160.711pt;height:17.340pt;vertical-align:-5.400pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G43"
|
|
>¡</SPAN
|
|
><SPAN ID="G44"
|
|
>i</SPAN
|
|
><SPAN ID="G45"
|
|
>log</SPAN
|
|
><SPAN ID="G46"
|
|
>¡</SPAN
|
|
><SPAN ID="G47"
|
|
>(1</SPAN
|
|
><SPAN ID="G48"
|
|
>+</SPAN
|
|
><SPAN ID="G49"
|
|
>ix</SPAN
|
|
><SPAN ID="G50"
|
|
>)</SPAN
|
|
><SPAN ID="G51"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:100.970pt;top:0.720pt;width:54.242pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G52"
|
|
>1</SPAN
|
|
><SPAN ID="G53"
|
|
>=</SPAN
|
|
><SPAN ID="G54"
|
|
>(1</SPAN
|
|
><SPAN ID="G55"
|
|
>+</SPAN
|
|
><SPAN ID="G56"
|
|
>x</SPAN
|
|
><SPAN ID="G57"
|
|
>2</SPAN
|
|
><SPAN ID="G58"
|
|
>)</SPAN
|
|
><SPAN ID="G59"
|
|
>¢</SPAN
|
|
></SPAN
|
|
></TD
|
|
></TR
|
|
></TBODY
|
|
></TABLE
|
|
></DIV
|
|
><FIGCAPTION CLASS="caption"
|
|
><B
|
|
>Figure 12–14. Mathematical definition of arc sine, arc cosine, and arc tangent</B
|
|
></FIGCAPTION
|
|
></FIGURE
|
|
><P CLASS="j"
|
|
>These formulae are mathematically correct, assuming completely accurate computation. They are not necessarily the simplest ones for real-valued computations. </P
|
|
><P CLASS="j"
|
|
>If both <VAR CLASS="param"
|
|
>number1</VAR
|
|
> and <VAR CLASS="param"
|
|
>number2</VAR
|
|
> are supplied for <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
>, the result is the arc tangent of <VAR CLASS="param"
|
|
>number1</VAR
|
|
>/<VAR CLASS="param"
|
|
>number2</VAR
|
|
>. The value of <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
> is always between −π (exclusive) and π (inclusive) when minus zero is not supported. The range of the two-argument arc tangent when minus zero is supported includes −π. </P
|
|
><P CLASS="j"
|
|
>For a <EM CLASS="term"
|
|
>real</EM
|
|
> <VAR CLASS="param"
|
|
>number1</VAR
|
|
>, the result is a <EM CLASS="term"
|
|
>real</EM
|
|
> and lies between −π<I
|
|
>/</I
|
|
>2 and π<I
|
|
>/</I
|
|
>2 (both exclusive). <VAR CLASS="param"
|
|
>number1</VAR
|
|
> can be a <A HREF="26_1_Glossary.html#complex"
|
|
><EM CLASS="term"
|
|
>complex</EM
|
|
></A
|
|
> if <VAR CLASS="param"
|
|
>number2</VAR
|
|
> is not supplied. If both are supplied, <VAR CLASS="param"
|
|
>number2</VAR
|
|
> can be zero provided <VAR CLASS="param"
|
|
>number1</VAR
|
|
> is not zero. </P
|
|
><P CLASS="j"
|
|
>The following definition for arc sine determines the range and branch cuts:</P
|
|
><CENTER CLASS="displaymath"
|
|
><SPAN STYLE="display:inline-block;position:relative;width:182.006pt;height:24.000pt;vertical-align:0.000pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G60"
|
|
>arcsin</SPAN
|
|
><SPAN ID="G61"
|
|
>z</SPAN
|
|
><SPAN ID="G62"
|
|
>=</SPAN
|
|
><SPAN ID="G63"
|
|
>¡</SPAN
|
|
><SPAN ID="G64"
|
|
>i</SPAN
|
|
><SPAN ID="G65"
|
|
>log</SPAN
|
|
><SPAN ID="G66"
|
|
>³</SPAN
|
|
><SPAN ID="G67"
|
|
>iz</SPAN
|
|
><SPAN ID="G68"
|
|
>+</SPAN
|
|
><SPAN ID="G69"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:142.681pt;top:2.254pt;width:32.158pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G70"
|
|
>1</SPAN
|
|
><SPAN ID="G71"
|
|
>¡</SPAN
|
|
><SPAN ID="G72"
|
|
>z</SPAN
|
|
><SPAN ID="G73"
|
|
>2</SPAN
|
|
><SPAN ID="G74"
|
|
>´</SPAN
|
|
></SPAN
|
|
></CENTER
|
|
><P CLASS="j"
|
|
>The branch cut for the arc sine function is in two pieces: one along the negative real axis to the left of −1 (inclusive), continuous with quadrant II, and one along the positive real axis to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the complex plane containing numbers whose real part is between −π<I
|
|
>/</I
|
|
>2 and π<I
|
|
>/</I
|
|
>2. A number with real part equal to −π<I
|
|
>/</I
|
|
>2 is in the range if and only if its imaginary part is non-negative; a number with real part equal to π<I
|
|
>/</I
|
|
>2 is in the range if and only if its imaginary part is non-positive. </P
|
|
><P CLASS="j"
|
|
>The following definition for arc cosine determines the range and branch cuts:</P
|
|
><CENTER CLASS="displaymath"
|
|
><SPAN STYLE="display:inline-block;position:relative;width:128.545pt;height:23.916pt;vertical-align:0.000pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G75"
|
|
>arccos</SPAN
|
|
><SPAN ID="G76"
|
|
>z</SPAN
|
|
><SPAN ID="G77"
|
|
>=</SPAN
|
|
><SPAN ID="G78"
|
|
>¼</SPAN
|
|
><SPAN STYLE="position:absolute;left:61.568pt;top:10.765pt;width:7.271pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G79"
|
|
>2</SPAN
|
|
><SPAN ID="G80"
|
|
>¡</SPAN
|
|
><SPAN ID="G81"
|
|
>arcsin</SPAN
|
|
><SPAN ID="G82"
|
|
>z</SPAN
|
|
></SPAN
|
|
></CENTER
|
|
><P CLASS="j"
|
|
>or, which are equivalent,</P
|
|
><CENTER CLASS="displaymath"
|
|
><SPAN STYLE="display:inline-block;position:relative;width:186.006pt;height:24.000pt;vertical-align:0.000pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G83"
|
|
>arccos</SPAN
|
|
><SPAN ID="G84"
|
|
>z</SPAN
|
|
><SPAN ID="G85"
|
|
>=</SPAN
|
|
><SPAN ID="G86"
|
|
>¡</SPAN
|
|
><SPAN ID="G87"
|
|
>i</SPAN
|
|
><SPAN ID="G88"
|
|
>log</SPAN
|
|
><SPAN ID="G89"
|
|
>³</SPAN
|
|
><SPAN ID="G90"
|
|
>z</SPAN
|
|
><SPAN ID="G91"
|
|
>+</SPAN
|
|
><SPAN ID="G92"
|
|
>i</SPAN
|
|
><SPAN ID="G93"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:146.681pt;top:2.254pt;width:32.158pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G94"
|
|
>1</SPAN
|
|
><SPAN ID="G95"
|
|
>¡</SPAN
|
|
><SPAN ID="G96"
|
|
>z</SPAN
|
|
><SPAN ID="G97"
|
|
>2</SPAN
|
|
><SPAN ID="G98"
|
|
>´</SPAN
|
|
></SPAN
|
|
></CENTER
|
|
><CENTER CLASS="displaymath"
|
|
><SPAN STYLE="display:inline-block;position:relative;width:246.595pt;height:30.251pt;vertical-align:0.000pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G99"
|
|
>arccos</SPAN
|
|
><SPAN ID="G100"
|
|
>z</SPAN
|
|
><SPAN ID="G101"
|
|
>=</SPAN
|
|
><SPAN ID="G102"
|
|
>2</SPAN
|
|
><SPAN ID="G103"
|
|
>log</SPAN
|
|
><SPAN ID="G104"
|
|
>¡</SPAN
|
|
><SPAN ID="G105"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:110.078pt;top:0.720pt;width:48.108pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G106"
|
|
>(1</SPAN
|
|
><SPAN ID="G107"
|
|
>+</SPAN
|
|
><SPAN ID="G108"
|
|
>z</SPAN
|
|
><SPAN ID="G109"
|
|
>)</SPAN
|
|
><SPAN ID="G110"
|
|
>=</SPAN
|
|
><SPAN ID="G111"
|
|
>2</SPAN
|
|
><SPAN ID="G112"
|
|
>+</SPAN
|
|
><SPAN ID="G113"
|
|
>i</SPAN
|
|
><SPAN ID="G114"
|
|
>p</SPAN
|
|
><SPAN STYLE="position:absolute;left:192.987pt;top:0.720pt;width:48.108pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G115"
|
|
>(1</SPAN
|
|
><SPAN ID="G116"
|
|
>¡</SPAN
|
|
><SPAN ID="G117"
|
|
>z</SPAN
|
|
><SPAN ID="G118"
|
|
>)</SPAN
|
|
><SPAN ID="G119"
|
|
>=</SPAN
|
|
><SPAN ID="G120"
|
|
>2</SPAN
|
|
><SPAN ID="G121"
|
|
>¢</SPAN
|
|
><SPAN STYLE="position:absolute;left:61.568pt;top:17.100pt;width:185.027pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G122"
|
|
>i</SPAN
|
|
></SPAN
|
|
></CENTER
|
|
><P CLASS="j"
|
|
>The branch cut for the arc cosine function is in two pieces: one along the negative real axis to the left of −1 (inclusive), continuous with quadrant II, and one along the positive real axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut as for arc sine. The range is that strip of the complex plane containing numbers whose real part is between 0 and π. A number with real part equal to 0 is in the range if and only if its imaginary part is non-negative; a number with real part equal to π is in the range if and only if its imaginary part is non-positive. </P
|
|
><P CLASS="j"
|
|
>The following definition for (one-argument) arc tangent determines the range and branch cuts:</P
|
|
><CENTER CLASS="displaymath"
|
|
><SPAN STYLE="display:inline-block;position:relative;width:198.739pt;height:27.749pt;vertical-align:0.000pt;xborder:1px solid #ccc"
|
|
><SPAN ID="G123"
|
|
>arctan</SPAN
|
|
><SPAN ID="G124"
|
|
>z</SPAN
|
|
><SPAN ID="G125"
|
|
>=</SPAN
|
|
><SPAN ID="G126"
|
|
>log</SPAN
|
|
><SPAN ID="G127"
|
|
>(1</SPAN
|
|
><SPAN ID="G128"
|
|
>+</SPAN
|
|
><SPAN ID="G129"
|
|
>iz</SPAN
|
|
><SPAN ID="G130"
|
|
>)</SPAN
|
|
><SPAN ID="G131"
|
|
>¡</SPAN
|
|
><SPAN ID="G132"
|
|
>log</SPAN
|
|
><SPAN ID="G133"
|
|
>(1</SPAN
|
|
><SPAN ID="G134"
|
|
>¡</SPAN
|
|
><SPAN ID="G135"
|
|
>iz</SPAN
|
|
><SPAN ID="G136"
|
|
>)</SPAN
|
|
><SPAN STYLE="position:absolute;left:61.568pt;top:14.598pt;width:137.171pt;border-bottom:0.960pt solid black;"
|
|
></SPAN
|
|
><SPAN ID="G137"
|
|
>2</SPAN
|
|
><SPAN ID="G138"
|
|
>i</SPAN
|
|
></SPAN
|
|
></CENTER
|
|
><P CLASS="j"
|
|
>Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch cuts or the values on the branch cuts incorrectly. The branch cut for the arc tangent function is in two pieces: one along the positive imaginary axis above <I
|
|
>i</I
|
|
> (exclusive), continuous with quadrant II, and one along the negative imaginary axis below −<I
|
|
>i</I
|
|
> (exclusive), continuous with quadrant IV. The points <I
|
|
>i</I
|
|
> and −<I
|
|
>i</I
|
|
> are excluded from the domain. The range is that strip of the complex plane containing numbers whose real part is between −π<I
|
|
>/</I
|
|
>2 and π<I
|
|
>/</I
|
|
>2. A number with real part equal to −π<I
|
|
>/</I
|
|
>2 is in the range if and only if its imaginary part is strictly positive; a number with real part equal to π<I
|
|
>/</I
|
|
>2 is in the range if and only if its imaginary part is strictly negative. Thus the range of arc tangent is identical to that of arc sine with the points −π<I
|
|
>/</I
|
|
>2 and π<I
|
|
>/</I
|
|
>2 excluded. </P
|
|
><P CLASS="j"
|
|
>For <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
>, the signs of <VAR CLASS="param"
|
|
>number1</VAR
|
|
> (indicated as <I CLASS="i"
|
|
><I
|
|
>x</I
|
|
></I
|
|
>) and <VAR CLASS="param"
|
|
>number2</VAR
|
|
> (indicated as <I CLASS="i"
|
|
><I
|
|
>y</I
|
|
></I
|
|
>) are used to derive quadrant information. Figure 12–15 details various special cases. The asterisk (*) indicates that the entry in the figure applies to implementations that support minus zero.</P
|
|
><FIGURE CLASS="boxfig"
|
|
><DIV CLASS="figbody"
|
|
><TABLE CELLSPACING="0" CELLPADDING="0" RULES="GROUPS" STYLE="margin: 1ex 0" WIDTH="100%"
|
|
><THEAD
|
|
><TR
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
><I CLASS="i"
|
|
><I
|
|
>y</I
|
|
></I
|
|
> <B
|
|
>Condition</B
|
|
></TH
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I CLASS="i"
|
|
><I
|
|
>x</I
|
|
></I
|
|
> <B
|
|
>Condition</B
|
|
></TH
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <B
|
|
>Cartesian locus</B
|
|
></TH
|
|
><TH ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <B
|
|
>Range of result</B
|
|
></TH
|
|
></TR
|
|
></THEAD
|
|
><TBODY
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Positive</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Positive</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Positive</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Quadrant</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>I</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>result</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Positive</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>y-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Quadrant</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>II</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>result</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Negative</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Negative</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>+π</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Negative</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>x-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Quadrant</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>III</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>result</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Negative</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>y-axis</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmtt"
|
|
>></SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Quadrant</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>IV</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
><I
|
|
>/</I
|
|
><SPAN CLASS="cmr"
|
|
>2</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>result</SPAN
|
|
><SPAN CLASS="cmtt"
|
|
><</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Origin</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>undefined</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>consequences</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Origin</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Origin</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>+0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Origin</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmr"
|
|
>+π</SPAN
|
|
></TD
|
|
></TR
|
|
><TR
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE=";padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>*</SPAN
|
|
> <I
|
|
>y</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <I
|
|
>x</I
|
|
><SPAN CLASS="cmr"
|
|
>=</SPAN
|
|
><SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>0</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;padding-right:3px"
|
|
> <SPAN CLASS="cmr"
|
|
>Origin</SPAN
|
|
></TD
|
|
><TD ALIGN="LEFT" VALIGN="BASELINE" STYLE="padding-left:3px;"
|
|
> <SPAN CLASS="cmsy"
|
|
>−</SPAN
|
|
><SPAN CLASS="cmr"
|
|
>π</SPAN
|
|
></TD
|
|
></TR
|
|
></TBODY
|
|
></TABLE
|
|
></DIV
|
|
><FIGCAPTION CLASS="caption"
|
|
><B
|
|
>Figure 12–15. Quadrant information for arc tangent</B
|
|
></FIGCAPTION
|
|
></FIGURE
|
|
></DD
|
|
><DT
|
|
><B
|
|
>Examples</B
|
|
></DT
|
|
><DD
|
|
><PRE CLASS="screen"
|
|
>(asin 0) <SPAN CLASS="cmsy"
|
|
><SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
></SPAN
|
|
> 0.0
|
|
(acos #c(0 1)) <SPAN CLASS="cmsy"
|
|
><SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
></SPAN
|
|
> #C(1.5707963267948966 -0.8813735870195432)
|
|
(/ (atan 1 (sqrt 3)) 6) <SPAN CLASS="cmsy"
|
|
><SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
></SPAN
|
|
> 0.087266
|
|
(atan #c(0 2)) <SPAN CLASS="cmsy"
|
|
><SPAN CLASS="arrow"
|
|
>→</SPAN
|
|
></SPAN
|
|
> #C(-1.5707964 0.54930615)</PRE
|
|
></DD
|
|
><DT
|
|
><B
|
|
>Exceptional Situations</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
><A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>acos</B
|
|
></A
|
|
> and <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>asin</B
|
|
></A
|
|
> should signal an error of <A HREF="26_1_Glossary.html#type"
|
|
><EM CLASS="term"
|
|
>type</EM
|
|
></A
|
|
> <A HREF="t_type-error.html" CLASS="typeref"
|
|
><B
|
|
>type-error</B
|
|
></A
|
|
> if <VAR CLASS="param"
|
|
>number</VAR
|
|
> is not a <A HREF="26_1_Glossary.html#number"
|
|
><EM CLASS="term"
|
|
>number</EM
|
|
></A
|
|
>. <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
> should signal <A HREF="t_type-error.html" CLASS="typeref"
|
|
><B
|
|
>type-error</B
|
|
></A
|
|
> if one argument is supplied and that argument is not a <A HREF="26_1_Glossary.html#number"
|
|
><EM CLASS="term"
|
|
>number</EM
|
|
></A
|
|
>, or if two arguments are supplied and both of those arguments are not <EM CLASS="term"
|
|
>reals</EM
|
|
>. </P
|
|
><P CLASS="j"
|
|
><A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>acos</B
|
|
></A
|
|
>, <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>asin</B
|
|
></A
|
|
>, and <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>atan</B
|
|
></A
|
|
> might signal <A HREF="t_arithmetic-error.html" CLASS="typeref"
|
|
><B
|
|
>arithmetic-error</B
|
|
></A
|
|
>.</P
|
|
></DD
|
|
><DT
|
|
><B
|
|
>See Also</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
><A HREF="f_log.html" CLASS="funref"
|
|
><B
|
|
>log</B
|
|
></A
|
|
>, <A HREF="f_sqrt.html" CLASS="funref"
|
|
><B
|
|
>sqrt</B
|
|
></A
|
|
>, <A HREF="12_1_Number_Concepts.html#sec_12_1_3_3" CLASS="secref"
|
|
><SPAN CLASS="cmr"
|
|
>Section</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>12.1.3.3</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>(Rule</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>of</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>Float</SPAN
|
|
> <SPAN CLASS="cmr"
|
|
>Substitutability)</SPAN
|
|
></A
|
|
></P
|
|
></DD
|
|
><DT
|
|
><B
|
|
>Notes</B
|
|
></DT
|
|
><DD
|
|
><P CLASS="j"
|
|
>The result of either <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>asin</B
|
|
></A
|
|
> or <A HREF="f_asin.html" CLASS="funref"
|
|
><B
|
|
>acos</B
|
|
></A
|
|
> can be a <A HREF="26_1_Glossary.html#complex"
|
|
><EM CLASS="term"
|
|
>complex</EM
|
|
></A
|
|
> even if <VAR CLASS="param"
|
|
>number</VAR
|
|
> is not a <A HREF="26_1_Glossary.html#complex"
|
|
><EM CLASS="term"
|
|
>complex</EM
|
|
></A
|
|
>; this occurs when the absolute value of <VAR CLASS="param"
|
|
>number</VAR
|
|
> is greater than one.</P
|
|
></DD
|
|
></DL
|
|
></DIV
|
|
></DIV
|
|
><DIV CLASS="footer"
|
|
><DIV CLASS="btmnav"
|
|
><A HREF="f_sin.html" CLASS="prev"
|
|
>←</A
|
|
><A HREF="v_pi.html" CLASS="next"
|
|
>→</A
|
|
></DIV
|
|
><DIV CLASS="trail"
|
|
>Conversion to HTML copyright 2023 by Gilbert Baumann</DIV
|
|
></DIV
|
|
></DIV
|
|
><SCRIPT
|
|
>domReady();</SCRIPT
|
|
></BODY
|
|
></HTML
|
|
> |