1
0
Fork 0
cl-sites/guile.html_node/Complex-Numbers.html
2024-12-17 12:49:28 +01:00

125 lines
6 KiB
HTML

<!DOCTYPE html>
<html>
<!-- Created by GNU Texinfo 7.1, https://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<!-- This manual documents Guile version 3.0.10.
Copyright (C) 1996-1997, 2000-2005, 2009-2023 Free Software Foundation,
Inc.
Copyright (C) 2021 Maxime Devos
Copyright (C) 2024 Tomas Volf
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled "GNU Free
Documentation License." -->
<title>Complex Numbers (Guile Reference Manual)</title>
<meta name="description" content="Complex Numbers (Guile Reference Manual)">
<meta name="keywords" content="Complex Numbers (Guile Reference Manual)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content=".texi2any-real">
<meta name="viewport" content="width=device-width,initial-scale=1">
<link href="index.html" rel="start" title="Top">
<link href="Concept-Index.html" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Numbers.html" rel="up" title="Numbers">
<link href="Exactness.html" rel="next" title="Exactness">
<link href="Reals-and-Rationals.html" rel="prev" title="Reals and Rationals">
<style type="text/css">
<!--
a.copiable-link {visibility: hidden; text-decoration: none; line-height: 0em}
div.example {margin-left: 3.2em}
span:hover a.copiable-link {visibility: visible}
strong.def-name {font-family: monospace; font-weight: bold; font-size: larger}
-->
</style>
<link rel="stylesheet" type="text/css" href="https://www.gnu.org/software/gnulib/manual.css">
</head>
<body lang="en">
<div class="subsubsection-level-extent" id="Complex-Numbers">
<div class="nav-panel">
<p>
Next: <a href="Exactness.html" accesskey="n" rel="next">Exact and Inexact Numbers</a>, Previous: <a href="Reals-and-Rationals.html" accesskey="p" rel="prev">Real and Rational Numbers</a>, Up: <a href="Numbers.html" accesskey="u" rel="up">Numerical data types</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<h4 class="subsubsection" id="Complex-Numbers-1"><span>6.6.2.4 Complex Numbers<a class="copiable-link" href="#Complex-Numbers-1"> &para;</a></span></h4>
<a class="index-entry-id" id="index-Complex-numbers"></a>
<a class="index-entry-id" id="index-complex_003f-2"></a>
<p>Complex numbers are the set of numbers that describe all possible points
in a two-dimensional space. The two coordinates of a particular point
in this space are known as the <em class="dfn">real</em> and <em class="dfn">imaginary</em> parts of
the complex number that describes that point.
</p>
<p>In Guile, complex numbers are written in rectangular form as the sum of
their real and imaginary parts, using the symbol <code class="code">i</code> to indicate
the imaginary part.
</p>
<div class="example lisp">
<pre class="lisp-preformatted">3+4i
&rArr;
3.0+4.0i
(* 3-8i 2.3+0.3i)
&rArr;
9.3-17.5i
</pre></div>
<a class="index-entry-id" id="index-polar-form"></a>
<p>Polar form can also be used, with an &lsquo;<samp class="samp">@</samp>&rsquo; between magnitude and
angle,
</p>
<div class="example lisp">
<pre class="lisp-preformatted">1@3.141592 &rArr; -1.0 (approx)
-1@1.57079 &rArr; 0.0-1.0i (approx)
</pre></div>
<p>Guile represents a complex number as a pair of inexact reals, so the
real and imaginary parts of a complex number have the same properties of
inexactness and limited precision as single inexact real numbers.
</p>
<p>Note that each part of a complex number may contain any inexact real
value, including the special values &lsquo;<samp class="samp">+nan.0</samp>&rsquo;, &lsquo;<samp class="samp">+inf.0</samp>&rsquo; and
&lsquo;<samp class="samp">-inf.0</samp>&rsquo;, as well as either of the signed zeroes &lsquo;<samp class="samp">0.0</samp>&rsquo; or
&lsquo;<samp class="samp">-0.0</samp>&rsquo;.
</p>
<dl class="first-deffn">
<dt class="deffn" id="index-complex_003f"><span class="category-def">Scheme Procedure: </span><span><strong class="def-name">complex?</strong> <var class="def-var-arguments">z</var><a class="copiable-link" href="#index-complex_003f"> &para;</a></span></dt>
<dt class="deffnx def-cmd-deffn" id="index-scm_005fcomplex_005fp"><span class="category-def">C Function: </span><span><strong class="def-name">scm_complex_p</strong> <var class="def-var-arguments">(z)</var><a class="copiable-link" href="#index-scm_005fcomplex_005fp"> &para;</a></span></dt>
<dd><p>Return <code class="code">#t</code> if <var class="var">z</var> is a complex number, <code class="code">#f</code>
otherwise. Note that the sets of real, rational and integer
values form subsets of the set of complex numbers, i.e. the
predicate will also be fulfilled if <var class="var">z</var> is a real,
rational or integer number.
</p></dd></dl>
<dl class="first-deftypefn">
<dt class="deftypefn" id="index-scm_005fis_005fcomplex"><span class="category-def">C Function: </span><span><code class="def-type">int</code> <strong class="def-name">scm_is_complex</strong> <code class="def-code-arguments">(SCM val)</code><a class="copiable-link" href="#index-scm_005fis_005fcomplex"> &para;</a></span></dt>
<dd><p>Equivalent to <code class="code">scm_is_true (scm_complex_p (val))</code>.
</p></dd></dl>
</div>
<hr>
<div class="nav-panel">
<p>
Next: <a href="Exactness.html">Exact and Inexact Numbers</a>, Previous: <a href="Reals-and-Rationals.html">Real and Rational Numbers</a>, Up: <a href="Numbers.html">Numerical data types</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>