
���

y�or�n�p� yes�or�no�p PREDICATES

Format� �y�or�n�p�

�y�or�n�p �string��

�yes�or�no�p�

�yes�or�no�p �string��

Required arguments� none

Optional arguments� �
Optional argument must evaluate to a string

The user is prompted with the string text �if provided�� y�or�n�p returns
t if y or Y is entered or nil if n or N is entered� but reprompts the user if
given any other response� yes�or�no�p behaves similarly but requires a yes
or no respsonse �upper or lower case mixed is ok��

Examples�

��y�or�n�p �Well� ��

Well� �Y or N� ok

Well� �Y or N� no

Well� �Y or N� y

T

��yes�or�no�p �Answer in full���

Answer in full� �Yes or No� y

Answer in full� �Yes or No� n

Answer in full� �Yes or No� nO

NIL

��� APPENDIX A� SELECTED LISP PRIMITIVES

symbolp PREDICATE

Format� �symbolp �exp��

Required arguments� �
�exp�� any lisp expression

Returns T if the argument evaluates to a symbol� nil otherwise�

Examples�

��symbolp �this�

T

��symbolp �this��

NIL

��symbolp 	�

NIL

��symbolp �	�

NIL

��symbolp ��this is a list��

NIL

��symbolp �pi�

T

��symbolp pi�

NIL

���

��setf �get �picard �rank� �captain�

CAPTAIN

��get �picard �rank�

CAPTAIN

��defstruct starship crew captain�

STARSHIP

��setf enterprise �make�starship��

S�STARSHIP CREW NIL CAPTAIN NIL�

��setf �starship�crew enterprise� �rest crew�

�starship�captain enterprise� �second �first crew���

PICARD

�enterprise

S�STARSHIP CREW

��COMMANDER RIKER� �LIEUTENANT WORF� �ENSIGN CRUSHER��

CAPTAIN PICARD�

��	 APPENDIX A� SELECTED LISP PRIMITIVES

setf MACRO

Format� �setf �place�� �val��

�place�� �val��

�placeN� �valN��

Required arguments� none

Optional arguments� any even number of arguments
�place�� either �i� the name of a variable� or �ii�
an expression referring to part of a larger struc�
ture �e�g� a list� property list� structure� or array��
�val�� any LISP expression�

setf assigns the result of evaluating �val� to the location speci
ed in the
immediately preceding �place�� It returns the result of evaluating the last
�val�� If no �place���val� pairs are speci
ed� setf returns nil� setf is
used� among other things� to assign values to variables� change parts of list
structures� and to manage property lists and structures� Examples of all
these uses are given in the chapters of this book� Other uses� too numerous
to document here� can be found in Steele�

Examples� �see all chapters for further examples�

��setf crew ��picard riker worf crusher��

�PICARD RIKER WORF CRUSHER�

��setf �first crew� �list �captain �first crew��

�second crew� �list �commander �second crew��

�third crew� �list �lieutenant �third crew��

�fourth crew� �list �ensign �fourth crew���

�ENSIGN CRUSHER�

�crew

��CAPTAIN PICARD� �COMMANDER RIKER� �LIEUTENANT WORF�

�ENSIGN CRUSHER��

���

second� third� fourth� �fth� sixth� seventh� eighth�
ninth� tenth FUNCTIONS

Format� �second �list��

�third �list��

etc�
Required arguments� �

The argument must evaluate to a list

These functions return the obvious element from the given list� or nil if the
list is shorter than the selected element would require�

Examples�

��second ��� � 	 ���

�

��fourth ��� � 	 ���

�

��ninth ��� � 	 ���

NIL

��� APPENDIX A� SELECTED LISP PRIMITIVES

reverse FUNCTION

Format� �reverse �list��

Required arguments� �
�list�� An expression which returns a list�

Reverse returns a list that contains all the elements of �list� in reversed
order�

Examples�

��reverse ��picard riker worf crusher��

�CRUSHER WORF RIKER PICARD�

��reverse �reverse ��picard riker worf crusher���

�PICARD RIKER WORF CRUSHER�

��reverse ���this list� �of words���

��OF WORDS� �THIS LIST��

��

rest FUNCTION

Format� �rest �expr��

Required arguments� �
�expr�� any LISP expression which returns a list

The argument expression must evaluate to a list� rest returns the list with�
out its
rst element� If the list is empty� i�e� is NIL� rest returns NIL�

Examples�

� �rest ��� � 	��

�� 	�

� �rest ���a �b �c�� d� e �f���

�E �F��

� �rest ���

NIL

� �rest �a�

Error� A is not of type LIST

��� APPENDIX A� SELECTED LISP PRIMITIVES

read FUNCTION

Format� �read �instream�

�eof�error�

�eof�value�

�recursive��

Required arguments� none

Optional arguments� �
�instream�� an expression which returns an
input stream
�eof�error�� any LISP expression
�eof�value�� any LISP expression
�recursive�� any LISP expression

Called with no arguments� read waits for input from the standard in�
put �usually the keyboard� and returns a LISP object� If �instream� is
speci
ed� input is taken from the stream rather than standard input� If
�eof�error� is speci
ed it controls what happens if an end of
le is en�
countered in the middle of a �read�� If �eof�error� is nil� no error results�
and the result of �eof�value� is returned by �read�� If �eof�error� is not
NIL� then encountering the end of a
le during a read will cause an error
to occur� �recursive� controls the kind of error that is signalled when an
end of
le is encountered� If �recursive� is speci
ed and is not NIL� then
the end of
le is reported to have occurred in the middle of reading in an
object� If it is NIL� the the end of
le is reported as occurring between
objects�

Examples� See chapter ��

���

or FUNCTION

Format� �or �exp�� �exp�� � � � �expn��

Required arguments� None

This function evaluates its arguments in order until it reaches a non�nil
value� in which case it returns that value� or it returns nil� Evaluation
of intermediate expressions may produce side�e�ects� In the special case
where and is given no arguments� it always returns nil�

Examples�

��or 	 �� � ���

	

��or nil �print �hello��

HELLO

HELLO

��or nil ��print hello� 	�

�PRINT HELLO�

��or�

NIL

��� APPENDIX A� SELECTED LISP PRIMITIVES

numberp PREDICATE

Format� �numberp �exp��

Required arguments� �
�exp�� any LISP expression

The predicate numberp returns T if �exp� evaluates to a number �i�e� an
object of type integer� ratio� �oat� or complex�� numberp returns NIL oth�
erwise�

Examples�

��numberp ����

T

��numberp ��	��	��

T

��numberp �� � �
�	��

T

��numberp
C��
� ��
���

T

��numberp ��� � � 	��

NIL

���

null PREDICATE

Format� �null �exp��

Required arguments� �
�exp�� any LISP expression

The predicate null returns T if �expr� evaluates to the empty list� NIL
otherwise� null is just the same as not� but is preferred when its purpose
of use is to test whether a list is empty�

Examples�

��null ��picard riker��

NIL

��null �rest ��picard���

T

��� APPENDIX A� SELECTED LISP PRIMITIVES

nthcdr FUNCTION

Format� �nthcdr �index� �list��

Required arguments� �
�index�� any expression which returns a positive
integer �
xnum��
�list�� any expression which returns a list�

The function nth returns the �list� with the
rst n elements removed�
�index� must be a non�negative integer� An index past the end of the list
will cause nthcdr to return nil�

Examples�

��setf ds� ��Sisko Kira Dax Odo Bashir OBrien��

�SISKO KIRA DAX ODO BASHIR OBRIEN�

��nthcdr � ds��

�SISKO KIRA DAX ODO BASHIR OBRIEN�

��nthcdr � ds��

�KIRA DAX ODO BASHIR OBRIEN�

��nthcdr 	 ds��

�ODO BASHIR OBRIEN�

��nthcdr �	�� ds��

NIL

���

nth FUNCTION

Format� �nth �index� �list��

Required arguments� �
�index�� any expression which returns a positive
integer �
xnum��
�list�� any expression which returns a list�

The function nth returns the indexed element of �list�� �index� must
be a non�negative integer� 	 indicates the
rst element of �list�� � the
second� etc� An index past the end of the list will cause nth to return nil�

Examples�

��nth � ��picard riker work crusher��

PICARD

��nth � ���captain picard�

�commander riker�

�lieutenant worf�

�ensign crusher���

�LIEUTENANT WORF�

��	 APPENDIX A� SELECTED LISP PRIMITIVES

not PREDICATE

Format� �not �exp��

Required arguments� �
�exp�� any LISP expression�

See entry for null� Not is identical to null� its use is preferred for when
�exp� is not a list�

���

��member ��lieutenant worf�

���captain picard�

�commander riker�

�lieutenant worf�

�ensign crusher��

�test
�equal�

��LIEUTENANT WORF� �ENSIGN CRUSHER��

��member �picard ��picard riker worf crusher� �test�not
�eq�

�RIKER WORF CRUSHER�

��member �worf

���captain picard�

�commander riker�

�lieutenant worf�

�ensign crusher��

�key
�second�

��LIEUTENANT WORF� �ENSIGN CRUSHER��

��� APPENDIX A� SELECTED LISP PRIMITIVES

member FUNCTION

Format� �member �item� �list�

�test �test�

�test�not �test�not�

�key �key��

Required arguments� �
�item�� Any LISP expression
�list�� A expression which returns a list

Keyword arguments� �
�test���test�not�� A function or lambda expression that
can be applied to compare �item� with elements of �list��
�key�� A function or lambda expression that can be applied
to elements of �list��

The elements of �list� are compared with the �item�� If �test� is not
speci
ed� eq is used� otherwise �test� is used� If �item� is found to match
an element of �list�� a list containing all the elements from �item� to
the end of �list� is returned� Otherwise NIL is returned� If �test�not�
is speci
ed� member returns a list beginning with the
rst UNmatched
element of �list�� Specifying a �key� causes member to compare �item�
with the result of applying �key� to each element of �list�� rather than
to the element itself�

Examples�

��member �riker ��picard riker worf crusher��

�RIKER WORF CRUSHER�

��member ��lieutenant worf�

���captain picard�

�commander riker�

�lieutenant worf�

�ensign crusher���

NIL

��

max� min FUNCTIONS

Format� �max �num�� � � � �numN��
�min �num�� � � � �numN��

Required arguments� �
�num�� � � � �numN� must all evaluate to numbers

Returns the numerical maximum �minimum� of the arguments given�

Examples�

��max � � 	 �� �� � ���

��

��min 	 � �� � ��� � �
��

���

��max 	�

	

��min ��

�

��� APPENDIX A� SELECTED LISP PRIMITIVES

mapcar FUNCTION

Format� �mapcar �func� �lis��

 �lisN��

Required arguments� �
First argument names a function �usually quoted��
Subsequent arguments must evaluate to lists�

Mapcar applies the named function successively to the
rst� second� third�
etc� elements of the subsequent arguments and returns a list of the results�
up to the length of the shortest list provided�

Examples�

��mapcar �� ��� � 	��

�� � 	�

��mapcar �� ��� � 	� ��� � ���

�� � ��

��mapcar �� ��� � 	� ��� � �� ��� � ���

��� �� ���

��mapcar �� ��� �� ��	 � ���

�� ��

��mapcar �� ��� � 	� ��� � ���

�T T NIL�

��mapcar �� ��� � 	� ��� ���

�T T�

���

listp PREDICATE

Format� �listp �exp��

Required arguments� �
�exp�� any LISP expression�

Returns T if �exp� is of the data type list� NIL otherwise�

Examples�

��listp ��a s d f��

T

��listp 	�

NIL

��listp �cons �� ��� 	 ����

T

��� APPENDIX A� SELECTED LISP PRIMITIVES

list FUNCTION

Format� �list �exp�� �exp��

�expN��

Required arguments� none

Optional arguments� arbitrary
�exp��

�expN�� any sequence of zero or more LISP expressions�

All the �arg��s are evaluated and the resulting values are returned as ele�
ments of a list�

Examples�

��list �picard �riker �worf �crusher�

�PICARD RIKER WORF CRUSHER�

��list �picard ��riker worf crusher��

�PICARD �RIKER WORF CRUSHER��

��list � �� � �� �� � � �� �� � � � ���

�� � 	 ��

���

let SPECIAL FORM

Format� �let ���var�� �init���

��var�� �init���

��varN� �initN���

�body��

Required arguments� �
���var� �init��

�� a list of zero or more
lists having the form ��var�� or ��var� �init���
�var� must be a symbol appropriate as the name
of a variable� �init� may be any LISP expres�
sion�

Optional arguments� arbitrary
�body�� any sequence of zero or more LISP expressions�

The �var��s are established as local variables for the expressions in �body��
If a �var� is not accompanied by an �init� expression� it is initially bound
to NIL� Otherwise� �init� is evaluated and assigned as the value of �var��
let evaluates all the expressions in �body� and returns the value of the last�
or NIL if there are none�

Examples�

��let ��a�

�b��

�and �not a� �not b���

T

��let ��a 	�

�b ���

�setf a �� a b��

�setf b �� a b��

�� a b��

��

��� APPENDIX A� SELECTED LISP PRIMITIVES

length FUNCTION

Format� �length �exp��

Required arguments� �
�exp� must evaluate to a sequence �e�g� list� array�
vector� string�

Returns the length of the given sequence�

Examples�

��length ��� � 	 � ���

�

��length �� � 	 � ���

�

��length �make�array 	��

	

��length nil�

�

���

if SPECIAL FORM

Format� �if �test�

�then�

�else��

Required arguments� �
�test�� any LISP expression
�then�� any LISP expression

Optional arguments� �
�else�� any LISP expression

The �test� expression is evaluated� if it returns a value other than NIL� if
returns the result of evaluating the �then� expression� If �test� evaluates
to NIL� and no �else� expression is provided� NIL is returned� Otherwise
the result of evaluating �else�is returned�

Examples�

��if �� � 	� � 	�

�

��if �� � 	�

�� � 	�

�� 	 ���

�

��if �� � 	� t�

NIL

��	 APPENDIX A� SELECTED LISP PRIMITIVES

�rst FUNCTION

Format� �first �exp��

Required arguments� �
�exp�� any LISP expression which returns a list

The argument expression must evaluate to a list�
rst returns the
rst
element of this list� If the list is empty� i�e� is nil�
rst returns nil�

Examples�

� �first ��� � 	��

�

� �first ���a �b �c�� d� e �f���

�A �B �C�� D�

� �first ���

NIL

� �first �a�

Error� A is not of type LIST

�	�

evenp� oddp PREDICATES

Format� �evenp �num��

�oddp �num��

Required arguments� �
�num�� any LISP expression that evaluates to an
integer�

Returns T if the value of �num� is even �odd�� NIL otherwise�

Examples�

��oddp 	�

T

��oddp ���

NIL

��evenp �
��

Error� �
� is not of type INTEGER

�	� APPENDIX A� SELECTED LISP PRIMITIVES

eval FUNCTION

Format� �eval �exp��

Required arguments� �
�exp�� any LISP expression�

eval provides direct access to the LISP expression evaluator� It causes
the evaluation of whatever �exp� returns� Thus� if �exp� is an evaluable
LISP expression and itself returns and evaluable LISP expression� then eval
returns the value of the second evaluation�

Examples�

��eval ��� � ���

	

��eval �cons �� ��� ����

	

��eval 	�

	

��eval �� 	 ���

�

��eval �cons �a ��s d f���

Error� The function A is undefined

�	

equal PREDICATE

Format� �equal �exp�� �exp���

Required arguments� �
�exp��� any LISP expression
�exp��� any LISP expression

Both argument expressions are evaluated� If the values returned are copies
of one another �or even are physically the same by occupying the same
memory�� equal returns T� In contrast� for two lists to be eql they must
represent the same object in memory�

Examples�

� �equal �hey �hello�

NIL

� �equal ��� ����

T

� �equal ��� �� 	�� ��� �� 	���

T

� �setq a ��� � 	��

�� � 	�

� �setq b ��� � 	��

�� � 	�

� �equal a b�

T

� �setq c a�

�� � 	�

� �equal a c�

T

�	� APPENDIX A� SELECTED LISP PRIMITIVES

eql PREDICATE

Format� �eql �exp�� �exp���

Required arguments� �
�exp��� any LISP expression
�exp��� any LISP expression

Both argument expressions are evaluated� If they both return atoms� eql
returns T if they are the same� If they return lists� eql returns T only if
the lists are represented by the same object in memory� In contrast� two
values can be �equal� if they are copies of one another �perhaps existing in
di�erent memory locations��

Examples�

� �eql �hello �hello�

T

� �eql ��� ����

T

� �eql � 	�

NIL

� �eql ��� � 	� ��� � 	��

NIL

� �setq a ��� � 	��

�� � 	�

� �setq b ��� � 	��

�� � 	�

� �eql a b�

NIL

� �setq c a�

�� � 	�

� �eql a c�

T

� �eql b c�

NIL

�	�

documentation FUNCTION

Format� �documentation �func� �type��

Required arguments� �
�func� must evaluate to the name of a function
�type� must be function� variable� type� structure� or setf �see below�

This function is useful from the command line for a quick reminder of the
format and usage of certain LISP primitives� Both arguments are usually
quoted symbols� See examples below�

Examples�

��documentation �documentation �function�

�

Args� �symbol doc�type�

Returns the doc�string of DOC�TYPE for SYMBOL� NIL if none exists

Possible doc�types are�

FUNCTION �special forms� macros� and functions�

VARIABLE �dynamic variables� including constants�

TYPE �types defined by DEFTYPE�

STRUCTURE �structures defined by DEFSTRUCT�

SETF �SETF methods defined by DEFSETF� DEFINE�SETF�METHOD� and

DEFINE�MODIFY�MACRO�

All built�in special forms� macros� functions� and variables have their

doc�strings
�

��documentation �cdr �function�

�

Args� �list�

Returns the cdr of LIST
 Returns NIL if LIST is NIL
�

��documentation �pi �variable�

�

The floating�point number that is appropriately equal to the ratio of the

circumference of the circle to the diameter
�

�	� APPENDIX A� SELECTED LISP PRIMITIVES

Examples�

� �do ��lst

��	 � � � ��

�rest lst�� � adds the elements of lst

�sum ���

��null lst� sum�

�setq sum �� sum �first lst����

��

� �do ��lst

��a �b �c d�� e �f��

�rest lst��

�len � �� � len��� � determines length of lst

��null lst� len�� � �do�� here� has no body

�

� �defun my�exp �m n� � raise m to power of n

�do ��result ��

�exp n��

��� exp �� result�

�setq result �� result m��

�setq exp �� exp �����

MY�EXP

� �my�exp � 	�

���

� �defun my�exp� �m n� � simpler version of my�exp

�do ��result � �� result m��

�exp n �� exp ����

��� exp �� result���

�	�

do SPECIAL FORM

Format� �do ���var�� �init�� �update���

��var�� �init�� �update���

��varN� �initN� �updateN���

��test� �body���

�body���

Required arguments� �
���var� �init� �update��

�� a list of zero or
more variable clauses� �var� is a symbol appropri�
ate as a variable name� �init�� which is optional�
is any LISP expression� �update�� which is op�
tional� is any LISP expression�
��test� �body���� �test� is any LISP expres�
sion� �body�� is a sequence of zero or more LISP
expressions�

Optional arguments� arbitrary
�body��� a sequence of zero or more LISP expres�
sions

The special form do allows the programmer to specify iteration� The
rst
part of do is a list of variables� if �init� is provided� the �var��s are ini�
tialised to the result of evaluating the corresponding �init�� If no �init�

is provided� �var� is initialised to NIL� The optional �update� expression
may specify how the variable is to be modi
ed after every iteration� After
every iteration� �var� is set to result of evaluating �update�� Initialisation
and updating for all variables is performed in parallel� thus a �var� in one
clause may not be used in the �init� or �update� of another clause�

The second part of �do�� the �test�� checks for termination� The
�test� is evaluated before each pass� if it returns a non�NIL value� the
sequence of expressions in �body�� are evaluated one by one� do returns
the value of the last expression in �body��� If �body�� contains no expres�
sions� do returns NIL�

The third part of the do is the body of the iteration� �body��� At each
pass� the sequence of expressions in �body�� are evaluated one by one�
If �body�� contains an expression of the form �return �expr��� where
�expr� is any LISP expression� do terminates immediately and returns the
result of evaluating �expr��

�	� APPENDIX A� SELECTED LISP PRIMITIVES

T

� �equal�length ��� �rest ��a b���

NIL

� �defun side�effect �x y�

�setq x �� x x x��

�� x y��

SIDE�EFFECT

� �side�effect � 	�

��

� �side�effect �� ���

��

�	�

defun MACRO

Format� �defun �name� ��par�� �par�� � � � �parN��
�body��

Required arguments� �
�name�� a symbol which is appropriate as the
name of funtion�
��par�� �par�� � � � �� a list of zero or more sym�
bols which are appropriate as parameter names

Optional arguments� �
�body�� a sequence of zero or more LISP expres�
sions

The arguments to defun are not evaluated�they are used to establish a
procedure de
nition� The
rst argument is a symbol which speci
es the
name of the function� This name can later be used to execute the �body�

of the function� The parameter�list follows the name� This list speci
es the
number and order of arguments in a function call� Each �par� is symbol
which may appear in the �body�� The value of each parameter� �par�� is
determined by the value of corresponding argument in the function call�
defun returns the name of the function�

Examples�

� �defun square �x�

�� x x��

SQUARE

� �square ��

��

� �square �� � ����

��

� �defun equal�length �lst� lst��

�cond ��� �length lst�� �length lst��� t�

�t nil���

EQUAL�LENGTH

� �equal�length ��a b c� ���d e� f g��

�		 APPENDIX A� SELECTED LISP PRIMITIVES

cons FUNTION

Format� �cons �exp�� �exp���

Required arguments� �
�exp��� any LISP expression
�exp��� any LISP expression

Both argument expressions are evaluated� In common usage� the second
expression usually returns a list� In this case� cons creates a new copy of
the list returned by �expr��� and makes the value returned by �expr�� the
new
rst element in this list� However� if �expr�� returns an atom� cons
returns the dotted pair of the values of the two expressions�

Examples�

� �cons �a ��� � 	��

�A � � 	�

� �cons ��a� ��� � 	��

��A� � � 	�

� �setq a 	�

	

� �cons a �list i j k��

�	 I J K�

� �cons �a a�

�A
 	� ��a dotted pair

� �cons ��� �� �q�

��� ��
 Q� ��another dotted pair

��

�setq b �� b b���

��equal action �square�a�

�setq a �� a a���

��equal action �square�b�

�setq b �� b b����

��

� �cond ��� a �� �found�

��� b �� �found��

NIL

� �cond ��� a ���� � strange use of cond

�� � before this� a was � due to previous

� cond clauses

�� APPENDIX A� SELECTED LISP PRIMITIVES

cond MACRO

Format� �cond ��test�� �body���

��test�� �body���

��testN� �bodyN���

Required arguments� none

Optional arguments� zero or more ��test� �body�� clauses
Here� �test� is any LISP expression� The �body�
is a sequence of zero or more LISP expressions�

Each �test� expression is evaluated in turn� until one is found whose value
is non�NIL� For this clause� the sequence of �body� expressions are evalu�
ated and the value of the last expression is returned as the result of cond� If
no successful �test� expression is found� cond returns NIL� If a successful
�test� expression is found� but its clause contains no �body� expressions�
the result of the �test� expression is returned as the result of cond�

Examples�

� �setq a �	�

	

� �setq b ���

�

� �cond ��� a b� �equal�

��� a b� �b�is�bigger�

�t �a�is�bigger��

B�IS�BIGGER

� �setq action �square�both�

SQUARE�BOTH

� �cond ��equal action �clear�both�

�setq a ��

�setq b ���

��equal action �square�both�

�setq a �� a a��

�

cdr Function

See the entry for rest� cdr is the older name for rest� Historically its
name is derived from Contents of Decrement Register� It�s pronunciation
rhymes with udder�

�� APPENDIX A� SELECTED LISP PRIMITIVES

caar� cadr� cdar� cddr� etc� FUNCTIONS

Format� �c�r �list��

Required arguments� �
Argument must evaluate to a list �or cons pair��

The function cxyr is a composition of the function cxr with cyr� So� for
example� �cadr foo� is equivalent to �car �cdr foo��� etc� Up to �
letters� a or d� may appear between the c and the r�

Examples�

��setf ds� ��Sisko Kira Dax Odo Bashir OBrien��

�SISKO KIRA DAX ODO BASHIR OBRIEN�

��cadr ds��

KIRA

��cddr ds��

�DAX ODO BASHIR OBRIEN�

��cdddr ds��

�ODO BASHIR OBRIEN�

��caddr ds��

DAX

��cdar ds��

Error� SISKO is not of type LIST

��

car FUNCTION

See the entry for first� car is the older name for first� Historically its
name is derived from Contents of Address Register�

�� APPENDIX A� SELECTED LISP PRIMITIVES

butlast FUNCTION

Format� �butlast �list��

�butlast �list� �int��

Required arguments� �
First argument must evaluate to a list

Optional arguments� �
�int� must evaluate to an integer

If butlast is used with a single argument then it is equivalent to �reverse

�rest �reverse �list����� I�e� it will return the list argument with the
last element removed�

If butlast is given an integer second argument� it is equivalent to �reverse
�nthcdr �num� �reverse �list����� I�e� it will remove the number of el�
ements speci
ed from the end of the list�

Examples�

��butlast ��a s d f��

�A S D�

��butlast ��a s d f� ��

�A S�

��butlast ��a s d f� ��

�A S D F�

��reverse �nthcdr � �reverse ��a s d f����

�A S�

��

atom PREDICATE

Format� �atom �exp��

Required arguments� �
�exp� can be any LISP expression

The argument expression is evaluated� If the value returned by this evalua�
tion represents a LISP atom� atom returns T� else it returns NIL� Symbols�
numbers and strings are all considered LISP atoms�

Examples�

� �atom �hello�

T

� �atom �hello��

T

� �atom �
��	��

T

� �atom ��hello �hello� �
��	���

NIL

�� APPENDIX A� SELECTED LISP PRIMITIVES

apply FUNCTION

Format� �apply �func� �list��

�apply �func� �exp��

 �expn� �list��

Required arguments� �
�func�must name a function or predicate �usually
quoted�� the last argument must be a list�

Optional arguments� arbitrary
Intermediate argument expressions must evaluate
to items of the correct type to which �func� can
be applied

With just two arguments� the function is applied to the elements in the
list just as if the expression �eval �cons �func� �list�� were evaluated�
Intermediate arguments are treated as additional arguments to the function�

Examples�

��apply �� ��� � 	 ���

��

��apply �� � � ��	 ���

��

��

append FUNCTION

Format� �append �list�� �list��

�listN� �exp��

Required arguments� none

Optional arguments� zero or more LISP expressions
�list�� any LISP expression which returns a list�
except the last argumentmay be any LISP expres�
sion�

Each of the arguments is evaluated� all except the last must return a list�
If all the arguments evaluate to lists� append creates a new list which has
as its elements the elements of all the argument lists� If the last argument
is not a list� append returns a dotted pair object�

Examples�

� �append ��a b� ��c d��

�A B C D�

� �append ��� �� �	��� �i �j� k��

�� �� �	�� I �J� K�

� �setq tmp ��fee fi fo��

�FEE FI FO�

� �append tmp �list �fum��

�FEE FI FO FUM�

� �append ��fo� �fum�

�FO
 FUM� �� this is a dotted pair

� �append �a ��� ���

Error� A is not of type LIST

�	 APPENDIX A� SELECTED LISP PRIMITIVES

and FUNCTION

Format� �and �exp�� �exp�� � � � �expN��

Required arguments� None

This function evaluates its arguments in order until it reaches a nil value�
in which case it returns NIL� or it returns the value of �expN�� Evaluation
of intermediate expressions may produce side�e�ects� In the special case
where and is given no arguments� it always returns T�

Examples�

��and 	 �� � ���

�

��and nil �print �hello��

NIL

��and t �print �hello� 	�

HELLO

	

��and�

T

��

������� �� PREDICATES

Format� �� �num�� �num�� � � � �
�� �num�� �num�� � � � �
��� �num�� �num�� � � � �
��� �num�� �num�� � � � �

Required arguments� �

�num�� �num�� � � � must evaluate to numbers�

Returns T if the sequence of arguments is ordered ��� ascending� �� de�
scending� or partially ordered ���� less than or equal� ��� greater than
or equal�� Otherwise returns nil�

Examples�

��� � ���

T

��� �� ��

NIL

��� �� ��

T

��� 	 � ��

T

��� ��

T

��� � � ��

NIL

���� � � ��

T

���� � � ��

NIL

��� ��� 	
��

NIL

�� APPENDIX A� SELECTED LISP PRIMITIVES

� PREDICATE

Format� �� �num�� �num�� � � � �

Required arguments� �

�num�� must evaluate to a number
Optional arguments� arbitrary

�num�� � � � must all evaluate to numbers

� returns T if all the arguments are numerically equal to each other� it
returns NIL otherwise�

Examples�

��� ��

T

��� � 	�

NIL

��� � 	 ��

NIL

��� � � � � �

T

��� � � 	 ��

NIL

��� � �a�

Error� A is not of type NUMBER

�

�� and �� FUNCTIONS

Format� ��� �num��

��� �num��

Required arguments� �
�num�� any LISP expression that evaluates to a
number�

Simple ways to add or subtract one� Note that ��� x� is equal to x�� not
��x�

Examples�

���� 	�

�

���� pi�

�
��������	�����	�

���� ��� 	��

	

�� APPENDIX A� SELECTED LISP PRIMITIVES

� FUNCTION

Format� �� �exp�� �exp��

�

Required arguments� �
Argument expressions must evaluate to numbers�

Argument expressions are evaluated and their cumulative di�erence is com�
puted�

Examples�

��� ��

��

��� � ��

��

��� � � 	�

��

��� � � 	 ��

��

��

� FUNCTION

Format� �� �exp�� �exp��

�

Required arguments� None�
Argument expressions must evaluate to numbers�

Argument expressions are evaluated and their sum is computed� See below
for special cases of zero or one arguments�

Examples�

��� � � ��

��

��� ��	
� ���	�

���
�

��� �� � 	� ��

��

��� �a ��

Error� A is not of type NUMBER

Special Cases�

��� 	�

	

����

�

�� APPENDIX A� SELECTED LISP PRIMITIVES

� FUNCTION

Format� �� �num�� �num��

�

Required arguments� None�
Argument expressions must evaluate to numbers�

Argument expressions are evaluated and their product is computed� See
below for special cases of zero or one arguments�

Examples�

��� � � ��

���

��� ��	
� ���	�

���
�

��� �� � 	� ��

��

��� �a ��

Error� A is not of type NUMBER

Special cases�

��� 	�

	

����

�

Appendix A

Selected LISP primitives

Entries are described as FUNCTIONS� PREDICATES� MACROS� or SPE�
CIAL FORMS�

FUNCTIONS evaluate all their arguments and return a value�
PREDICATES are functions that always return either t or nil�
MACROS and SPECIAL FORMS do not always evaluate all their ar�

guments�
Currently approximately �	 LISP primitives are documented here� Even�

tually just over �		 primitives will be documented�
We adopt the convention of using angle brackets � � to indicate where

appropriate text should be inserted when using these primitives� the exam�
ples should make this clear�

In many of the descriptions below� the notion of list is used when either
a list or a LISP data type known as the dotted pair would be acceptable�
Beginners generally need not use dotted pairs� so they are ignored for the
sake of simplicity here�

��

��CHAPTER�� FUNCTIONS� LAMBDAEXPRESSIONS�ANDMACROS

Chapter �

Functions� Lambda

Expressions� and Macros

This chapter is not yet written� but here are the major sections�

��� Eval

��� Lambda Expressions

��� Funcall

��� Apply

��� Mapcar

��� Backquote and Commas

��� Defmacro

��

�	 CHAPTER �� INPUT AND OUTPUT

Error� A comma has appeared out of a backquote

Error signalled by READ

Broken at READ
 Type �H for Help

If punctuation is likely to appear in input� then it is necessary to use read�
char� which reads one character at a time� It is then possible to inspect each
character and process it appropriately if it is problematic� Exactly how to
do this will not be covered here as it makes a nice exercise to develop your
understanding of LISP input processing�

���� CONVERTING STRINGS TO LISTS
�

With�open�
le will produce an error if the
le foo does not already exist�
unless its behavior is controlled using the �if�does�not�exist �create or �if�
does�not�exist nil options� The
rst of these options creates a
le with
the speci
ed name� the second causes the body of the with�open�
le to be
ignored� and the value nil is returned�

Format can be used with the name of a stream as its
rst argument�

��with�open�file �outfile �foo� �direction �output�

�format outfile ���This is text
�����

NIL

This overwrites foo so that it contains three lines � a blank line� a line
with

This is text

and another blank line�
Print� prin�� princ� terpri� format� read and read�line all can be used

with stream speci
cations to do
le input and output�

��� Converting Strings to Lists

Sometimes it is useful to convert text strings to lists� For example� to get
substantial input� read�line is most convenient� but it returns a string� If
the objective is to parse the input� it is much more convenient to have a
list of words than a string�

Here is an example of code to convert a string to a list�

�defun string�to�list �str�

�do� ��stringstream �make�string�input�stream str��

�result nil �cons next result��

�next �read stringstream nil �eos�

�read stringstream nil �eos���

��equal next �eos� �reverse result����

��string�to�list �this is a string of text��

�THIS IS A STRING OF TEXT�

Because of its reliance on read� this function will not work with certain
kinds of punctuation� For example�

��string�to�list �Commas cause problems� see��

� CHAPTER �� INPUT AND OUTPUT

As soon as the variables are initialized� the test �equal next �eof� is
performed� If it is true then �reverse result� is evaluated and returned� If
not� then all expressions in the body of the do are evaluated �in this case
there are none��

After the body has been evaluated� all the variables are updated with
the expressions indicated� In other words� result gets next cons�ed into it�
and next gets updated with a new read from instream�

The second and third argments to read control its behavior when it
reaches the end of the
le� The second argument� nil in this case� indicates
that reaching the end of the
le should not generate an error� The third
argument� in this case the symbol eof� indicates what should be returned
instead of an error� This enables the do loop to determine when the end
of
le has been reached and return the appropriate result� Notice that
choosing eof as the result to return would cause the do loop to stop if it
reads the symbol eof in the middle of a
le� This may or may not be
desirable behavior�

Writing to a
le is very similar to reading�

��with�open�file �outfile �foo� �direction �output�

�prin� ��here is an example� outfile��

�HERE IS AN EXAMPLE�

And the
le now contains one line�

�HERE IS AN EXAMPLE�

Note that it is necessary to specify the �direction as �output� With�open�
le
assumes that a
le is being opened for input by default� so this must be
explicity overridden when doing
le output� Files may also be opened as
�direction �io� which allows input and output�

Notice also that this example destroyed the previous contents of foo�
This behavior can be controlled with the �if�exists option� For example�

��with�open�file �outfile �foo� �direction �output

�if�exists �append�

�print ��here is a second list� outfile��

�HERE IS A SECOND LIST�

This will add a second line to the
le foo� so that it contains

�HERE IS AN EXAMPLE�

�HERE IS A SECOND LIST�

���� INPUT AND OUTPUT TO FILES

In order to receive input from or send output to a
le� the
le must be
attached to an appropriate stream� The easiest way to handle this is with
the macro with�open�
le� This is the general form for with�open�
le�

�with�open�file ��stream� �filename�� �body��

Unless speci
ed otherwise� with�open�
le assumes that the stream is an
input stream� in other words� that you will be reading data from the named

le�

Suppose you have a
le called �foo�� which looks like this�

this is an

example of a file

�that has things�

we

might want �to read in�

�

�

��

Here�s how to get the
rst LISP expression from foo�

��with�open�file �infile �foo�� �read infile��

THIS

A slightly more complicated operation is to make a list of all the expressions
in foo� The following will work�

�with�open�file �infile �foo��

�do ��result nil �cons next result���

�next �read infile nil �eof� �read infile nil �eof��

��equal next �eof� �reverse result�����

�See the appendix entry for �do� if you do not know how it works��
If you evaluate this code it will return the list�

�THIS IS AN EXAMPLE OF A FILE �THAT HAS THINGS� WE MIGHT WANT

�TO READ IN� � � ���

At the beginning of the do� two variables are speci
ed � result and next�
The initial value of result is nil� The intial value of next is the result of
evaluating �read in
le nil �eof�� The e�ects of the last two arguments in
this read are explained below�

� CHAPTER �� INPUT AND OUTPUT

�defun f�to�c ��

�format t ���Please enter Fahrenheit temperature� ��

�let� ��ftemp �read��

�ctemp �� �� ftemp 	�� ������

�format t

����s degrees Fahrenheit is �s degrees Celsius���

ftemp

�float ctemp�� �� print floated value

ctemp�� �� return ratio value

��f�to�c�

Please enter Fahrenheit temperature� �� �� user enters ��

�� degrees Fahrenheit is �	
															 degrees Celsius

���	

Read�line always returns a string� Read�line will take in everything until
the return key is pressed and return a string containing all the characters
typed� Read�char reads and returns a single character�

��� Input and Output to Files

All input and output in Common LISP is handled through a special type
of object called a stream� When a stream is not speci
ed� Common LISP�s
default behavior is to send output and receive input from a stream bound
to the constant �terminal�io� corresponding to the computer�s keyboard
and monitor� Evaluating �terminal�io� shows a printed representation of
this stream�

��terminal�io�

�two�way stream ����c�a��

The designation �two�way� here speci
es that it is a stream that is
capable of handling both input and output�

In all the examples so far� printing and reading has been done without
specifying a stream� hence the e�ects have been to interact with the key�
board and screen� However� print� format� read and the other functions
mentioned in this chapter allow optional speci
cation of a di�erent stream
for input or output�

���� READING
�

�Float converts a number from integer or ratio to a �oating point number�
i�e� one with a decimal point��

��f�to�c ���

�� degrees Fahrenheit is

��
��������������� degrees Celsius

�����

Format simply evaluates the optional arguments in order they appear to
determine the values for each �s� There must be enough optional arguments
following the control string to provide values for all the occurrences of �s
in the control string� otherwise an error will occur� If there are too many
optional arguments� format evaluates them all �so side e�ects may occur�
but no error is signalled�

Format will also preserve newlines entered directly in the control string�
For example� f�to�c would behave just the same if de
ned as follows�

�defun f�to�c �ftemp�

�let ��ctemp �� �� ftemp 	�� ������

�format t �

�s degrees Fahrenheit is

�s degrees Celsius

�

ftemp

�float ctemp�� �� print floated value

ctemp�� �� return ratio value

In addition to these two control sequences it is useful to know about �T to
produce tab spacing and �� to print a tilde� Some other control sequences
are documented in the appendix entry for format�

��� Reading

Input from the keyboard is controlled using read� read�line� and read�char�
Read expects to receive a well�formed LISP expression� i�e� an atom�

list or string� It will not return a value until a complete expression has
been entered � in other words all opening parentheses or quotes must be
matched�

Here is f�to�c using read�

� CHAPTER �� INPUT AND OUTPUT

The full use of a destination will be introduced further below� for most
basic uses� the destination should be speci
ed as t or nil� The control
string is a string containing characters to be printed� as well as control
sequences� Every control sequence begins with a tilde� �� The control
sequences may require extra arguments to be evaluated� which must be
provided as optional arguments to format�

With t as the speci
ed destination� and no control sequences in the
control�string� format outputs the string in a manner similar to princ� and
returns nil�

��format t �this��

this

NIL

With nil as destination and no control sequences� format simply returns
the string�

��format nil �this��

�this�

Inserting �� in the control string causes a newline to be output�

��format t ���This shows ��printing with ��newlines
����

This shows

printing with

newlines

NIL

�s indicates that an argument is to be evaluated and the result inserted
at that point� Each �s in the control string must match up to an optional
argument appearing after the control string�

Here is an example of a function that uses this capability�

�defun f�to�c �ftemp�

�let ��ctemp �� �� ftemp 	�� ������

�format t

����s degrees Fahrenheit is ���s degrees Celsius���

ftemp �� first �s

�float ctemp�� �� second �s

ctemp�� �� return ratio value

���� NICER OUTPUT USING FORMAT
�

But you expected to get �S A� since you expected to get the list of the
second of x with the
rst of y�

You would like to know why foo returned this� One way to help you
see what is going on is to insert print statements into the de
nition� If for
example you want to see what is being listed if the test is true� you can
modify the de
nition like this�

�defun foo �x y�

�if �eq x y� �list �print �second x�� �print �first y����

�list y �rest x���

Now when you try the same call� the following happens�

��foo ��a s d f� ��a s d f��

��A S D F� �S D F��

But this is just the same as before� Neither print function got called� so
you deduce that the test must have returned nil� This should help you to
recall the di�erence between eq and equal� Now you modify the de
nition
of foo again�

�defun foo �x y�

�if �equal x y� �list �print �second x�� �print �first y����

�list y �rest x���

And try it out�

��foo ��a s d f� ��a s d f��

S

A

�S A�

This time you see the e�ects of the prints� and what values get combined
to produce the result� Thus print helps you to debug your code�

��� Nicer Output Using Format

Print and its kin are useful basic printing functions� but for sophisticated
and easy to read output� format is more useful�

The basic structure of a format call is

�format �destination� �control�string� �optional�arguments��

� CHAPTER �� INPUT AND OUTPUT

� �� first print

� �� second print

	 �� returns sum

Print always precedes its output with a newline� Prin� is just like print
except that it does not do a new line before printing�

��� �prin� �� �prin� ���

��

	

Print is thus equivalent to terpri followed by prin�� This function will
behave just like print when passed a single argument�

�defun my�print �x�

�terpri�

�prin� x��

Princ and prin� are the same except in the way they print strings� Princ
does not print the quote marks around a string�

��prin� �this string��

�this string� �� printed

�this string� �� returned

��princ �this string��

this string �� no quotes can be more readable

�this string� �� string returned

The print family of functions is useful as a debugging tool� Since they
return the values of their arguments� they can be inserted into a previously
de
ned function to reveal what is going on� For example� suppose you have
a function de
ned as follows�

�defun foo �x y�

�if �eq x y� �list �second x� �first y���

�list y �rest x���

You try the function out and get this�

��foo ��a s d f� ��a s d f��

��A S D F� �S D F��

Chapter �

Input and Output

Terminal input and output is controlled with variants of print and read�
More sophisticated output is available using format� Input and output
using system
les is achieved using the same functions and associating a

le with an input or output �stream��

��� Basic Printing

Frill�free printing in LISP is achieved with print� prin�� princ and terpri�
The simplest uses of print� prin�� and princ involve a single argument�
Terpri� which produces a newline� can be called with no arguments�

All these are functions� In addition to causing output� they return
values� With print� princ� and prin�� the value returned is always the
result of evaluating the
rst argument� Terpri always returns nil�

Here are examples using print�

��print �this�

THIS �� printed

THIS �� value returned

��print �� � ���

	 �� printed

	 �� returned

��� �print �� �print ���

�

	 CHAPTER �� SIMPLE DATA STRUCTURES IN LISP

���� EXERCISES� ��

��typep t� �trekkie�

T

��trekkie�p t��

T

��employee�p t	�

NIL

There are several advanced features of defstruct� including the ability to
create structures which incorporate other structures� If you understand
the basics laid out here� however� you will have no trouble understanding
the description of these features in Steele�

��� Exercises�

�� Design a simple data program that allows the user to enter and re�
trieve personnel data� Your program should store
rst and last names�
addresses� age� marital status� and names of children� You may use
any of the techniques introduced in this chapter� but your solution
should not place any arbitrary limits� such as a limit on the number
of children that can be associated with a person�s record� Your pro�
gram should allow the user to retrieve information about the person
or persons whose records match a given key� for example to give the
ages of everyone with the last name �Smith��

�� Write a function� num�kids� which uses the data stored by your pro�
gram for the previous problem to answer the question how many
children an individual has�

�� Write functions� num�boys and num�girls that answer how many of an
individual�s children are boys and how many are girls� using only the
information mentioned in problem �� In other words� your functions
should use the children�s names to determine their sex� You must at
a minimum decide how to handle storage of a list correlating names
and sexes� what to do if names not in your list are encountered� and
how to handle names such as �Francis� that may be given to either
sex�

�� CHAPTER �� SIMPLE DATA STRUCTURES IN LISP

��setf employee� �make�employee �age 	�

�last�name �farquharson

�first�name �alice

�sex �female��

S�EMPLOYEE AGE 	� FIRST�NAME ALICE LAST�NAME FARQUHARSON

SEX FEMALE CHILDREN NIL�

��employee�first�name employee��

ALICE

As this example shows� it is not necessary to give values to all the slots
when the make function is called� Neither is it necessary to specify slot
values in the same order they are speci
ed in the original defstruct�

Defstruct also allows you to specify default values for given slots� Here
is an example�

��defstruct trekkie

�sex �male�

�intelligence �high�

age�

TREKKIE

The values enclosed in parentheses with a slot name are the default values
for that slot � that is� the values that these slots will have for created
instance� unless explicitly overridden� These three examples of instances
illustrate the use of defaults�

��setf t� �make�trekkie��

S�TREKKIE SEX MALE INTELLIGENCE HIGH AGE NIL�

��setf t� �make�trekkie �age 	���

S�TREKKIE SEX MALE INTELLIGENCE HIGH AGE 	��

��setf t	 �make�trekkie �age �� �sex �female��

S�TREKKIE SEX FEMALE INTELLIGENCE HIGH AGE ���

Each instance of a structure has a type which can be tested with the pred�
icate typep� or with the particular predicate automatically set up by def�
struct� By default� the type of an instance is determined by the structure
name�

��typep t� �employee�

NIL

���� DEFSTRUCT �

��defstruct employee

age

first�name

last�name

sex

children�

EMPLOYEE

In this example �employee� is the name of the structure� and �age�� etc�
are the slots� Defstruct automatically generates a function to make in�
stances of the named structure� In this example the function is called
make�employee� and in general the name of the instance constructor func�
tion is make�defstructname�

As with the other data types before� it is useful to associate particular
instances with a symbol for easy access�

��setf employee� �make�employee��

S�EMPLOYEE AGE NIL FIRST�NAME NIL LAST�NAME NIL SEX NIL

CHILDREN NIL�

�Di�erent implementations of LISP will display structures in di�erent ways��
In this case� employee� is an instance of the type employee� and all its

slots are initially given the value nil� Each slot is provided an automatic
access function� by joining the structure name with the slot name�

��employee�age employee��

NIL

��employee�sex employee��

NIL

Slot values can be assigned using setf�

��setf �employee�age employee�� ���

��

��employee�age employee��

��

It is also possible to assign values to the slots of a particular instance at
the time the instance is made� simply by preceding the slot name with a
colon� and following it with the value for that slot�

�� CHAPTER �� SIMPLE DATA STRUCTURES IN LISP

Technically strings are arrays� but it is probably best �at
rst� to ignore
this fact and treat them as a separate data type� Typing a string directly
to the interpreter simply causes the interpreter to return the string�

��This is a string�

�This is a string�

Notice that the string may contain spaces� and that the distinction between
upper and lowercase letters is preserved� A string is completely opaque to
the interpreter and may contain punctuation marks and even new lines�

��This is a larger piece of text

It contains a few� otherwise unmanageable

punctuation marks
 It can even have blank lines�

�Like these��

�This is a larger piece of text

It contains a few� otherwise unmanageable

punctuation marks
 It can even have blank lines�

�Like these��

Strings can also be included as elements of lists� For example�

��cons �this� ��here��

��this� HERE�

Strings are very useful for giving nicely formatted responses to user com�
mands� This will be explored in the next chapter�

��� Defstruct

Defstruct allows you to create your own data structures and automati�
cally produces functions for accessing the data� Structures have names and
�slots�� The slots are used for storing speci
c values� Defstruct creates
a generic type of which particular �instances� can be made� Here is an
example using defstruct to establish a structure type�

���� ARRAYS� VECTORS� AND STRINGS ��

��aref my�array � ��

NIL

��setf �aref my�array � �� �hi�

HI

��setf �aref my�array � �� �bye�

BYE

�my�array

�A��NIL HI NIL� �BYE NIL NIL��

From this example you should be able to work out the indexing scheme�
Make array has a number of additional features we will not cover here�

However� one that is particularly useful is the �initial�contents keyword�
Here is an example to illustrate the use of �initial�contents�

��make�array ��� 	 �� �initial�contents

����a b c d� �e f g h� �i j k l��

��m n o p� �q r s t� �u v w x����

	A���A B C D� �E F G H� �I J K L�� ��M N O P� �Q R S T�

�U V W X���

Initial contents are speci
ed with a list of elements having the required
sublist structure to match the array�

The use of �initial�contents is entirely optional with make�array� as is
the use of other keywords not introduced here�

Programmers like to use arrays because they give uniformly fast access
to all their elements� In general� however� arrays are less �exible for rep�
resenting structure than lists� Consider the structure represented in this
list�

�a �b c� �d e f �g h���

No array can concisely reproduce this structure� since it must have a uni�
form number of elements for each of its dimensions�

����� Strings

A string in LISP is represented by characters surrounded by double quotes�
�� Strings are very useful for manipulating chunks of text� They are also
used by Common LISP to manage input and output�

�� CHAPTER �� SIMPLE DATA STRUCTURES IN LISP

Object System �CLOS�� Arrays� vectors� and strings will be introduced in
the rest of this chapter� Customized list structures will not be covered here
because they are highly dependent on the speci
c application� CLOS will
not be covered here� either� as it the purpose of this book is to bring you to
a point where you can easily understand other presentations of advanced
LISP topics�

��� Arrays� Vectors� and Strings

����� Arrays and Vectors

An array is a special type of data object in LISP� Arrays are created using
the make�array function� To make an array it is necessary to specify the
size and dimensions� The simplest case is an array of one dimension� also
called a vector�

Make�array returns an array� Most often one wants to bind this array
to a symbol� Here�s an example�

��setf my�vector �make�array ��	���

�NIL NIL NIL�

In this case� the argument to make�array speci
ed that the array should
have one dimension of three elements� The array that was returned has
three elements� all of them initially set to nil� �The actual printed repre�
sentation of the array may vary between di�erent LISP implementations��

These elements can be accessed and changed using aref� These examples
illustrate�

��aref my�vector ��

NIL

��setf �aref my�vector �� t�

T

�my�vector

�T NIL NIL�

Indexing of arrays starts with 	� �Just like indexing of lists using nth��
Here�s an example of a two�dimensional array and some assignments�

��setf my�array �make�array ��� 	���

�A��NIL NIL NIL� �NIL NIL NIL��

���� PROPERTY LISTS ��

��� Property Lists

An alternative way to attach data to symbols is to use Common LISP�s
property list feature� For each symbol� the LISP interpreter maintains a
list of properties which can be accessed with the function get�

Get expects to be given a symbol and a key� If a value has been set for
that key� it is returned� otherwise get returns nil�

��get �mary �age�

NIL

��setf �get �mary �age� ���

��

��get �mary �age�

��

As this example shows� the value to be returned by a get expression is set
using setf� �This is another place where setf works but setq will not�� The
way to think of setf�s behavior here is that you tell it exactly what you will
type and what should be returned� The example here assigns the value ��
as the value to be returned when you type �get �mary �age��

Additional properties can be added in the same way�

��setf �get �mary �job� �banker�

BANKER

��setf �get �mary �sex� �female�

FEMALE

��setf �get �mary �children� ��bonnie bob��

�BONNIE BOB�

If� for some reason� you need to see all the properties a symbol has� you
can do so�

��symbol�plist �mary�

�SEX FEMALE JOB BANKER AGE �� CHILDREN �BONNIE BOB��

Get is a convenient way to manage related data� and in some ways is more
�exible than assoc� For many applications� however� it is necessary to
build more sophisticated data structures� Options for doing this include
customized nested list structures� arrays� and use of the Common Lisp

�� CHAPTER �� SIMPLE DATA STRUCTURES IN LISP

LISP provides a function� assoc� to retrieve information easily from associ�
ation lists given a retrieval key�

For example�

��assoc �age person��

�AGE �	�

��assoc �children person��

�CHILDREN JANE JIM�

Notice that assoc returns the entire key�expression sublist� It does not
matter to assoc what order the keys appear in the association list or how
many expressions are associated with each key�

Setf can be used to change particular values� For example� here is a
function that can be used on a birthday to update a person�s age automat�
ically�

�defun make�older �person�

�setf �second �assoc �age person��

��� �second �assoc �age person�����

Have your LISP interpreter evaluate this de
nition� then see that it works�

��make�older person��

��

��assoc �age person��

�AGE ���

Assoc will return nil if the key is not found�

��assoc �sex person��

NIL

But it is very easy to add new key�expression sublists� again using setf�

��setf person� �cons ��sex male� person���

��SEX MALE� �FIRST�NAME JOHN� �LAST�NAME SMITH� �AGE ���

�CHILDREN JANE JIM��

Chapter �

Simple Data Structures

in LISP

Many applications of LISP involve storing a variety of values associatedwith
a symbolic name� Association lists and property lists provide two ways
of doing this� unique to LISP� Arrays� vectors and strings are also used
for data storage and manipulation� Their use is similar to programming
languages other than LISP� Defstruct provides a way to create customized
data structures�

��� Association Lists

An association list is any list of the following form�

���key��

�expressions��

��key��

�expressions��

�

The keys should be atoms� Following each key� you can put any sequence
of LISP expressions�

Use the interpreter to enter this example of an association list�

��setf person� ���first�name john�

�last�name smith�

�age 	��

�children jane jim���

��FIRST�NAME JOHN� �LAST�NAME SMITH� �AGE 	��

�CHILDREN JANE JIM��

��

�	 CHAPTER �� PROGRAMMING TECHNIQUES

�� Write a function called �replace�� which takes a list and two elements
as arguments� and returns the original list with all instances of the

rst element replaced by the second element�

�� Write a function which counts all of the atoms in a nested list�

�� Write a function called �insert�� which takes a nested list and two
atoms as arguments� and returns the original list in which the second
atom has been inserted to the right of all occurrences of the
rst atom
�if the
rst atom occurs in the list at all��

�� A new mathematical� binary operator � is de
ned as follows�

x�y � x� � y�

where x� y are integers� Extend the de
nition of �evaluate� presented
earlier to include the operators � and � �normal division��

�� The Fibonacci series is de
ned as follows�

fib�n� �

�
fib�n� �� � fib�n� �� if n � �
� if n � 	 or n � �

Implement a recursive function to calculate the nth
bonacci number�

� Write a function called �merge�� which takes two number�lists of equal
length� It adds the corresponding members of each list and then
returns the product of the resulting numbers�

For example� �merge ��� � 	� ��� � ��� should return �	� since
�� � �� � �� � �� � �� � ��� equals �	�

�� Will the following piece of code always terminate Be careful to
consider all possible cases�

�defun mystery �n�

�cond ��� n �� ��

�t �mystery �� n ������

���� EXERCISES ��

�� When evaluating an expression� do three things�

a� check for the termination condition�

b� identify operator�

c� apply operator to recursive calls on the operands�

�� When building a number value using �� return 	 at the terminating
line� When building a number value using �� return � at the termi�
nating line�

�� When recurring on a number� do three things�

a� check for the termination condition�

b� use the number in some form�

c� recur with a changed form of the number�

� To ensure proper termination do two things�

a� make sure that you are changing at least one argument in your
recursive call�

b� make sure that your test for termination looks at the arguments
that change in the recursive call�

�� Two simple cases may occur when changing an argument in a recur�
sive call�

a� if you are using �rest� to change an argument which is a list� use
�null� in the test for termination�

b� if you are decreasing an argument which is a number� compare
it with 	 in the test for termination�

�� Use �let� to reduce the number of function calls�

�	� Encapsulate program fragments into new functions to improve clarity�

��� Encapsulate repeated program fragments into new functions to reduce
program size�

��	 Exercises

�� Write a function called �b�remove� �for better remove�� which takes
a list and an element as arguments� and returns the original list with
all occurrences of the element removed�

�� CHAPTER �� PROGRAMMING TECHNIQUES

Note that we are performing almost the same computation in the
rst
three cases of the �cond� clause� speci
cally� it is to calculate the distance
between two points�

Example ���
Write a function called �distance�� which takes two points �represented
as two�number lists�� and returns the euclidean distance between them�
Use �distance� to rewrite �get�side��

The function �distance� can be implemented simply as follows�

�defun distance �pt� pt��

�sqrt �� �exp �� �first pt�� �first pt��� ��

�exp �� �second pt�� �second pt��� �����

Now we can rewrite �get�side� as follows�

�defun get�side �a b c k�

�cond ��� k �� �distance a b��

��� k �� �distance b c��

��� k 	� �distance c a��

�t ����

Thus� using Rule of Thumb ��� we have reduced the size of the program
signi
cantly� making it easier to understand�

The concept of abstraction is not unique to LISP� It is also used in other
high�level programming languages such as C� Pascal� or FORTRAN�

��� Summary of Rules

�� When recurring on a list� do three things�

a� check for the termination condition�

b� use the
rst element of the list�

c� recur with the �rest� of the list�

�� If a function builds a list using �cons�� return �� at the terminating
line�

�� When recurring on a nested list� do three things�

a� check for the termination condition�

b� check if the
rst element of the list is an atom or a list�

c� recur with the �
rst� and the �rest� of the list�

���� ABSTRACTION �

Example ���
Write a function called �cube�� which takes a number and returns its
cube� Use �cube� to rewrite �cube�list��

�cube� is de
ned simply as follows�

�defun cube �elt�

�� elt elt elt��

Now we can use �cube� to rewrite �cube�list��

�defun cube�list �lst�

�cond ��null lst� nil�

�t �cons �cube �first lst��

�cube�list �rest lst������

These last two de
nitions are much easier to read and understand� and they
do not waste any function calls� Furthermore� cube is a useful tool that
may be used in other function de
nitions�

RULE OF THUMB ���
Encapsulate repeated program fragments into new
functions to reduce program size�

Example ���
Suppose a list of two numbers represents a point in euclidean space�
Write a function called �get�side�� which takes three points� a� b� and
c� and a key� k� The three points represent the vertices of a triangle�
The function returns a value as follows�

if k � �� returns length of side a�b�
if k � �� returns length of side b�c�
if k � �� returns length of side c�a�
else� returns 	�

One possible solution is the following�

�defun get�side �a b c k�

�cond ��� k ��

�sqrt �� �exp �� �first a� �first b�� ��

�exp �� �second a� �second b�� �����

��� k ��

�sqrt �� �exp �� �first b� �first c�� ��

�exp �� �second b� �second c�� �����

��� k 	�

�sqrt �� �exp �� �first c� �first a�� ��

�exp �� �second c� �second a�� �����

�t ����

�� CHAPTER �� PROGRAMMING TECHNIQUES

��� Abstraction

As a program becomes larger� it becomes increasingly di!cult to under�
stand� When all of the details of the program are considered at once� they
may easily exceed the intellectual grasp of one person� To increase the
readability of the program� it is useful to abstract away or �hide� unnec�
essary details� There are two areas in which abstraction may be used� one
may hide the details of the data one is working with by using abstract data
structures and associated routines �chapter ��� or one may hide fragments
of the program to improve clarity� The latter is explored in this section�
Hiding fragments of the program increases clarity and often also results in
shorter programs�

RULE OF THUMB ��
Use �let� to reduce the number of function calls�

Example ���
Write a function called �cube�list�� which takes a list of numbers and
returns the same list with each element replaced with its cube� Thus�
�cube�list ��� 	 ����� should return ���� � �		����

By now� with the techniques presented above� the reader should be able to
see that the following is a possible solution�

�defun cube�list �lst�

�cond ��null lst� nil�

�t �cons �� �first lst�

�first lst�

�first lst��

�cube�list �rest lst������

But note that to compute the cube of each element we must extract it three
times from the list using �
rst�� Using Rule of Thumb �� we can reduce this
to only one use of �
rst� for each element� This may be done as follows�

�defun cube�list �lst�

�cond ��null lst� nil�

�t �let ��elt �first lst���

�cons �� elt elt elt�

�cube�list �rest lst�������

RULE OF THUMB ���
Encapsulate program fragments into new functions to
improve clarity�

���� ENSURING PROPER TERMINATION ��

�length ��a b c��

� �� � �length ��a b c���

� �� � �� � �length ��a b c����

� �� � �� � �� � �length ��a b c�����

� �� � �� � �� � �� � �length ��a b c������

� �� � �� � �� � �� � �� � �length ��a b c�������

�

�

The list is passed�in unmodi
ed in the recursive call� Such simple mistakes
are very common� and their frequency increases with longer and more com�
plicated programs� Compare this de
nition of �length� with the one given
in section ����

RULE OF THUMB ��
To ensure proper termination do two things�
��� make sure that you are changing at least one argument

in your recursive call�
��� make sure that your test for termination looks at the

arguments that change in the recursive call�

Example ��
A function� �exp�� takes two positive� non�zero integers� x and y� and
raises x to the y power� Will the following recursive de
nition for
�exp� terminate properly

�defun exp �x y�

�cond ��� y �� ��

�t �� x �exp x �� y �������

Yes� the above de
nition is correct and will terminate properly according
to Rule of Thumb
� We ful
ll both requirements of the rule�

��� We are changing at least one argument in the recursive call� namely
y� which is decremented by one�

��� In our test for termination� �� y ��� we are using an argument that
we change in the recursive call� namely y�

RULE OF THUMB 	�
Two simple cases may occur when changing an argument in a
recursive call�
��� if you are using �rest� to change an argument which is

a list	 use �null� in the test for termination�
��� if you are decreasing an argument which is a number	

compare it with
 in the test for termination�

�� CHAPTER �� PROGRAMMING TECHNIQUES

��� At each level of recursion we will subtract m from n� this represents
our use of n�

��� We will recur with the value of n changed� speci
cally� we will recur
with n�m and m�

These steps translate into the following function de
nition�

�defun remainder �n m�

�cond ��� n m� n�

�t �remainder �� n m� m����

The following notation gives an idea of the execution of �remainder��

�remainder 	� ��

� �remainder �	 ��

� �remainder �� ��

� �remainder � ��

� �remainder � ��

� �

��� Ensuring Proper Termination

Often it happens that the LISP programmer unknowingly implements an
in
nite loop� This could happen in two di�erent ways� an in
nite �do� loop�
or an improper recursion� In the
rst case� it may be that the programmer
is using the general �do� construct and has speci
ed a test for termination
that will never occur� This problem can be avoided by using the more
speci
c constructs �dotimes� or �dolist� �chapter ��� These constructs
have a built�in test for termination� �dotimes� iterates a speci
ed number
of times� and �dolist� iterates once for each element in a given list� Improper
recursion� however� is often more di!cult to discover�

Example 	�
The following de
nition wrongly implements the function to determine
the length of a list�

�defun length �lst�

�cond ��null lst� ��

�t �� � �length lst�����

The following notation illustrates why the above function does not termi�
nate�

���� RECURSION ON NUMBERS ��

The above problem is naturally recursive� In fact� it is very often repre�
sented mathematically as the following recurrence relation�

factorial�n� �

�
n � factorial�n� �� if n � 	
� if n � 	

This translates easily into the following LISP function de
nition�

�defun factorial �n�

�cond ��� n �� ��

�t �� n �factorial �� n �������

Let us try to identify the three element of Rule of Thumb ��

��� We check for termination by testing if n has been reduced to 	�

��� We use the number� n� in the multiplication�

��� We do recur on a changed form of the number� i�e� on n decremented
by one�

The following notation gives an idea of the execution of �factorial��

�factorial ��

� �� � �factorial 	��

� �� � �� 	 �factorial ����

� �� � �� 	 �� � �factorial �����

� �� � �� 	 �� � �� � �factorial ������

� �� � �� 	 �� � �� � �����

� �� � �� 	 �� � ����

� �� � �� 	 ���

� �� � ��

� ��

Example ��
Write a function called �remainder�� which takes two positive non�zero
numbers� n and m� and returns the remainder when n is divided by m�

Our strategy will be to repeatedly subtract m from n till n is less than
m� at this point n will be the value of the remainder� Let us proceed in the
steps suggested by Rule of Thumb ��

��� We know that we can stop when n � m� This will be our termination
condition and we will return the value of n�

�� CHAPTER �� PROGRAMMING TECHNIQUES

When building a number value using �	 return
 at the
terminating line� When building a number value using
�	 return � at the terminating line�

Example ��
Write a function� �sum�of�list�� which takes a list of numbers and returns
their sum� Write a similar function� �product�of�list�� which takes a
list of numbers and returns their product�

Using the ideas presented in previous sections� writing these functions
should be simple� Again� we need to do three things�
rst we will check
for the end of the list� second we will use the
rst element of the list in the
addition �or multiplication�� lastly the number will be added �or multipled�
to the recursive call on the �rest� of the list� According to Rule of Thumb
�� we must remember that at the terminating line we must return 	 for
addition and � for multiplication�

The following are the proposed solutions�

�defun sum�of�list �lst�

�cond ��null lst� ��

�t �� �first lst�

�sum�of�list �rest lst������

�defun product�of�list �lst�

�cond ��null lst� ��

�t �� �first lst�

�product�of�list �rest lst������

In the above examples� although we are building a number� we are still
recurring on a list� It is also possible to recur on a number� The structure
of recursion on numbers is very similar to that on simple lists�

RULE OF THUMB
�
When recurring on a number	 do three things�
�� check for the termination condition�
�� use the number in some form�

� recur with a changed form of the number�

Example
�
The factorial of a non�negative integer� n� is

n � �n��� � �n��� � ��� � � � � � ��
Also� the factorial of 	 is �� Implement the factorial function
in LISP�

���� RECURSION ON NUMBERS ��

�defun evaluate �expr�

�cond ��numberp expr� expr�

��equal �first expr� ���

�� �evaluate �second expr��

�evaluate �third expr����

��equal �first expr� ���

�� �evaluate �second expr��

�evaluate �third expr����

�t

�� �evaluate �second expr��

�evaluate �third expr������

Since there are only three possible operators� we can use the default case
for �� The following notation gives an idea of the execution of �evaluate��

�evaluate ��� �� � 	� �� �� �� �� 	��

� �� �evaluate ��� � 	�� �evaluate ��� �� �� �� 	���

� �� �� �evaluate �� �evaluate 	��

�evaluate ��� �� �� �� 	���

� �� �� � �evaluate 	�� �evaluate ��� �� �� �� 	���

� �� �� � 	� �evaluate ��� �� �� �� 	���

� �� � �evaluate ��� �� �� �� 	���

� �� � �� �evaluate ��� �� ��� �evaluate 	���

� �� � �� �� �evaluate ��� �evaluate ���

�evaluate 	���

� �� � �� �� �� �evaluate ��� �evaluate 	���

� �� � �� �� �� �� �evaluate 	���

� �� � �� � �evaluate 	���

� �� � �� � 	��

� �� � ���

� ���

��� Recursion on Numbers

There are some functions which recur on a list of elements� but which
return a number� The function �length� de
ned earlier is such a function�
It takes an arbitrarily long list of elements and returns a count of its top�
level elements� In the case of length� we are building a number by additions�
at each level we add a one� One can also imagine a function which builds a
number with consecutive multiplications� In both cases one must be careful
in choosing which value to return at the terminating line�

RULE OF THUMB ��

�	 CHAPTER �� PROGRAMMING TECHNIQUES

�search ��a �� c� � �� �c�

� �search ���� c� � �� �c�

� �or �search ��� c� �c� �search ��� �� �c��

� �or �search ��c� �c� �search ��� �� �c��

� �or �t �search ��� �� �c��

� �t

Note that �or� only needs to evaluate upto the
rst non�nil argument to
return true� Similarly� �and� only needs to evaluate upto the
rst nil ar�
gument to return nil� Another interesting application of recursion is the
evaluation of mathematical or logical expressions�

RULE OF THUMB ��
When evaluating an expression	 do three things�
�� check for the termination condition�
�� identify operator�

� apply operator to recursive calls on the operands�

Example ��
Write a function� �evaluate�� which takes a pre
x expression represented
as a nested list and returns the numerical value represented by the
expression� Only �� �� and � may be used as operators and each operator
can have only two operands� Thus� �evaluate ��� �� � �� �� should
return �	�

Let us again try to identify the three elements of the previous Rule of
Thumb�

��� Note that we are no longer working with a list of elements� The
argument of �evaluate� represents an expression� If this argument is
a list we know that it will have three parts� an operator� the
rst
operand sub�expression� the second operand sub�expression� In this
case� we will need to further evaluate the operands� If the argument
is a number� we can stop� We can use the predicate �numberp� to
test for a numerical value�

��� We can identify the
rst element of the argument list as the operator�
For each operator we will need to apply a di�erent function�

��� For each possible operator we will recursively call evaluate on the
rst
and second operands�

The above translates into the following simple piece of code�

���� RECURSION ON NESTED LISTS AND EXPRESSIONS ��

RULE OF THUMB ��
When recurring on a nested list	 do three things�
�� check for the termination condition�
�� check if the �rst element of the list is an atom or a list�

� recur with the ��rst� and the �rest� of the list�

Example ��
Write a function� �search�� which takes a nested list and an atom� and
it returns �t if it
nds the atom within the nested list and returns nil
otherwise�

To write this function� let�s take the steps recommended by Rule of
Thumb ��

��� We will move through the list one element at a time and if we reach
the end without
nding the given atom� we will return ��� To check
for termination we can use the predicate �null��

��� At each step we will look at the
rst element of the list� if it is an
atom we will check if it equals the given atom� If they match� we can
return �t immediately� else we go on with the search in the rest of the
list� We can use the predicate �atom� to check if the
rst element is
an atom� We can use �equal� to test for equality�

��� Lastly� if we discover that the
rst element is a list� we may need to
perform two searches� the
rst within the nested list represented by
the
rst element� the second within the �rest� of the original list� If
the result of either of these searches is �t� the overall result is also
true� We can use the logical function �or� to get this e�ect�

The above translates into the following simple piece of code�

�defun search �lst elt�

�cond ��null lst� nil�

��atom �first lst��

�if �equal �first lst� elt�

�t

�search �rest lst� elt���

�t �or �search �first lst� elt�

�search �rest lst� elt�����

The following notation gives an idea of the execution of �search��

�� CHAPTER �� PROGRAMMING TECHNIQUES

The solution is�

�defun length �lst�

�cond ��null lst� ��

�t �� � �length �rest lst������

We can identify the three components mentioned in Rule of Thumb ��

��� We still use �null� to test for termination� but� since now we want to
return a count of top level elements� when we reach the end of the
list we return 	 �the length of a null list��

��� We only use the
rst element implicitly� we account for its presence
by adding a one to the value returned by the recursive call�

��� We do recur with the �rest� of the given list� Although we do not ex�
plicitly use �first lst�� the
rst element of the list is not forgotten�
by adding a one to the result of the recursive call� we keep a track of
the top level elements�

The following notation gives an idea of the execution of �length��

�length ��a �� q� ����

� �� � �length ���� q� �����

� �� � �� � �length ��������

� �� � �� � �� � �length �������

� �� � �� � �� � ����

� �� � �� � ���

� �� � ��

� 	

��� Recursion on Nested Lists and Expres

sions

So far we have worked only with simple lists� These are lists for which the
top�level elements are our only concern� For example� given the list ��� a
�� g� up�� the top�level elements are� �� a� �� g�� and up� But often we are
interested in looking deeper than just the top�level� A nested list consists of
atoms and lists� the latter may themselves be nested� Searching� deleting�
inserting� replacing atoms in a multi�level list� or evaluating arbitrarily
complex mathematical expressions are all naturally recursive problems on
nested lists� Such recursion is slightly more complicated than recursion on
simple lists� but it again follows a common� general structure�

���� RECURSION ON SIMPLE LISTS �

��� We must remember that the function �remove� returns the original
list with the
rst occurrence of the given element removed� When
we recur with the �rest� of the list� it is important to preserve the
elements that do not match the given element� Thus� in the third
part� we should use �cons� to save these elements�

Note that we are building a list using �cons�� speci
cally a list of elements
excluding the element to be removed� Using Rule of Thumb �� we know
that in such a case we should return �� at the terminating line� Thus� if the
test for �null� returns true� our function will return ���

The following solution clearly shows the three parts of Rule of Thumb
� and also illustrates the use of Rule of Thumb ��

�defun remove �lst elt�

�cond ��null lst� nil�

��equal �first lst� elt� �rest lst��

�t �cons �first lst�

�remove �rest lst� elt�����

The following notation gives an idea of the execution of �remove��

�remove ��a � c � c �� �c�

� �cons �a �remove ��� c � c �� �c��

� �cons �a �cons �� �remove ��c � c �� �c���

� �cons �a �cons �� ��� c ����

� �cons �a ��� � c ���

� ��a � � c ��

�remove ��a �� q� �� �q�

� �cons �a �remove ���� q� �� �q��

� �cons �a �cons ��� q� �remove ���� �q���

� �cons �a �cons ��� q� �cons � �remove ��� �q����

� �cons �a �cons ��� q� �cons � ������

� �cons �a �cons ��� q� ������

� �cons �a ���� q� ���

� ��a �� q� ��

Note� Rule of Thumb � provides a general framework within which to think
about recursion� In di�erent examples� the importance and length of the
three components may di�er� In the following example the second part of
the rule �using the
rst element of the list� comes into play only implicitly�

Example ��
Write a function� �length�� which takes a list and returns a count of
all the top level elements in the list�

�� CHAPTER �� PROGRAMMING TECHNIQUES

��� Recursion on Simple Lists

Lists are one of the basic data structures in LISP� Very often programmers
need to manipulate lists� Think of the broad possibility of operations one
may want to perform on lists� counting the number of elements in a list�
searching for an element in a list� removing a particular element from a
list� replacing an element in a list� these represent only a small number
of possibilities� All of these problems are inherently recursive� Also� their
solutions all follow the same structure�

RULE OF THUMB ��
When recurring on a list	 do three things�
�� check for the termination condition�
�� use the �rst element of the list�

� recur with the �rest� of the list�

RULE OF THUMB ��
If a function builds a list using �cons	� return �� at the
terminating line�

Example ��
Write a function� �remove�� which takes a list and an element� and
returns the original list with the
rst occurrence of the element
removed�

To solve this problem we will have to look at each of the elements of the
given list one by one� checking if it is the element to be removed� We know
that we can stop searching if we

��� have reached the end of the list without
nding the element to be
removed� or

��� have found the element to be removed �we can stop� since we are only
interested in its
rst occurrence��

Let�s try to apply Rule of Thumb ��

��� From the rule we know that at each step we want to recur with the
�rest� of the list� Thus� at each recursive call the list will get shorter
by one element� We must stop when the list becomes ��� We can use
the predicate �null� to check for this condition�

��� The second part states that we should try to use the
rst element of
the list� Before each recursive call we want to check if the
rst element
of the list equals the given element� We can use the predicate �equal�
to test for equality�

Chapter �

Programming Techniques

As has been mentioned before� LISP has its origins in lambda calculus
and recursive function theory� The basic de
nition of LISP is found in
McCarthy et al "����#� Almost all implementations of it have modi
ed this
de
nition in various ways� The beauty of programming in LISP is still
largely due to its original de
nition� Good programming style in Common
LISP is no di�erent from other versions of LISP� In this chapter we will
examine several techniques that have proved to be very useful in e�ectively
programming in LISP�

��� A Word about LISP

LISP is a functional programming language� This means it is based on
the use of expressions� The readers may be familiar with Pascal� C� or
FORTRAN� which are all classi
ed as imperative programming languages�
These languages are statement�oriented� the programs consisting of a se�
quence of statements� LISP programs� as originally de
ned� were speci
ed
entirely as expressions� Current day implementations of LISP� however�
have extensions which allow LISP programs to be more statement�oriented�
At the heart of LISP is recursion �chapter ��� Due to their regular� recur�
sive structure� LISP programs tend to be short and elegant� But also� to be
able to program e�ectively in LISP� a di�erent kind of thinking is required�
one must learn to think recursively� This is very di�erent from statement�
oriented thinking required for languages such as Pascal� C� or FORTRAN�
A few simple rules presented in the next few sections will help the reader
to think recursively and create better LISP programs�

��

�� CHAPTER �� RECURSION AND ITERATION

�� A palindrome is something that reads the same backwards as for�
wards� The following is a de
nition of PALINDROMEP which checks
if a list is a palindrome�

�defun palindromep �lst�

�equal lst �reverse lst�� �

So� for example�

��palindromep ��� � 	 � � � 	 � ���

T

��palindromep ��a b b a��

T

��palindromep ��� � 	��

NIL

Write a recursive version of this function called R�PALINDROMEP
without using the function reverse�

�� A mathematical expression in LISP may look something like�

�� �� � � pi� 	 �� � ���

This would be more readable �to most humans� in �in
x� notation�

��� � � � pi� � 	 � �� � ���

Write a function INFIX which given LISP�like mathematical expres�
sions� returns the in
xed version�

���� EXERCISES ��

Real time refers to the time it actually took the computer to return the
answer to the screen� In this example� there is no di�erence in real time
between the two functions� Run time and real time can di�er because com�
puters running multitasking operating systems� such as UNIX�tm�� switch
cpu time between di�erent processes to give the appearance of running
them simultaneously� If there are a lot of other processes running on the
computer� the run time for the LISP function is unchanged� but real time
increases�

��	 Exercises

�� Rede
ne power so that it can handle negative integer exponents �with�
out using LISP�s own expt function��

�� Write a function called MY�REMOVE which removes all occurrences
of an element from a list� MY�REMOVE should use recursion� Here
are a some examples of how your function should behave�

��my�remove �hello ��hello why dont you say hello��

�WHY DONT YOU SAY�

��my�remove ��oops my� ��� � �oops my� � ���

�� � � ��

�� Write an iterative version of the above and call it REMOVE�I�

�� LISP provides a prede
ned function MEMBER which behaves as fol�
lows�

��member 	 ��� � 	 � �� �

�	 � ��

��member �hey ��whats going on here� �

NIL

��member �key ��where did �i �put� the �key��� �

NIL

Write a recursive function called MY�MEMBER which checks for an
atom inside nested lists� Here are examples�

��my�member 	 ��� � 	 � �� �

T

��my�member �hey ��whats going on here� �

NIL

��my�member �key ��where did �i �put� the �key��� �

T

�� CHAPTER �� RECURSION AND ITERATION

��� �MYMAX �	��� ����

��� �MYMAX �	�����

��� �MYMAX 	����

��� �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

�	 �MYMAX 	����

�� �MYMAX 	����

�� �MYMAX 	����

	���

Notice that the answer ���� is carried all the way from the bottom to the
top�level� Mymax is a tail�recursive function�

When compiling LISP code� a �smart� compiler is capable of recognizing
tail recursion� and cutting o� processing as soon as the lowest level returns�
This can greatly speed up the operation of recursive functions�

��� Timing Function Calls

The LISP interpreter provides a interesting feature for timing the evaluation
of a function call� Any expression can be timed using �time �exp��� For
example� here�s time applied to the recursive and iterative versions of power
as evaluated by the interpreter�

��time �power � �����

real time � �
��� secs �� your output will vary

run time � �
�		 secs

������������������������	���	��

��time �power�i � �����

real time � �
��� secs

run time � �
��	 secs

������������������������	���	��

To assess the relative speeds of these two functions� run time �i�e� the
amount of time required by the computer�s central processing unit to per�
form the calculation� is the key
gure� In this example� power�i uses about
�$� as much cpu time as power�

���� TAIL RECURSION ��

��� Iterative functions are typically faster than their recursive counter�
parts� So� if speed is an issue� you would normally use iteration�

��� If the stack limit is too constraining then you will prefer iteration over
recursion�

��� Some procedures are very naturally programmed recursively� and all
but unmanageable iteratively� Here� then� the choice is clear�

��� Tail Recursion

Item ��� above is only a rough rule of thumb� If you get to the stage
of compiling your LISP code �a compiler takes code in a programming
language and turns it into binary machine language to make it run faster�
some compilers are smart enough to distinguish tail�recursive processes from
those that are not� None of the above examples of recursive functions are
tail recursive� To be tail�recursive� the answer ultimately returned by the
top�level call to the function must be identical to the value returned by the
very bottom level call� In the trace output from power� above� you can see
that the ultimate answer� ��� is not the same as the deepest level returned
value which was �� so power is not a tail�recursive function�

This function has the property of being tail�recursive�

�defun mymax �nums� �� finds the largest

�cond ��� �length nums� �� �car nums�� �� termination

��� �car nums� �cadr nums�� �� first � second so

�mymax �cons �car nums�

�cddr nums���� �� get rid of second

�t �mymax �cdr nums����� �� else dump first

If you trace this function applied to a list of numbers you will see something
like the following�

��MYMAX ��� 	 ��� �	 � � 	��� �	 �	 �	 ����

�� �MYMAX �� 	 ��� �	 � � 	��� �	 �	 �	 ����

�� �MYMAX �	 ��� �	 � � 	��� �	 �	 �	 ����

	� �MYMAX ���� �	 � � 	��� �	 �	 �	 ����

�� �MYMAX ���� � � 	��� �	 �	 �	 ����

�� �MYMAX ���� � 	��� �	 �	 �	 ����

�� �MYMAX ���� 	��� �	 �	 �	 ����

�� �MYMAX �	��� �	 �	 �	 ����

�� �MYMAX �	��� �	 �	 ����

�� �MYMAX �	��� �	 ����

�	 CHAPTER �� RECURSION AND ITERATION

�� �NUM�NUMS �� �� 	 ����

�� �NUM�NUMS ��� 	 ����

�� �NUM�NUMS �� 	 ���

�� �NUM�NUMS �	 ���

��� �NUM�NUMS ����

��� �NUM�NUMS NIL�

��� �NUM�NUMS ��

��� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS NIL�

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS 	�

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��� �� ����

�� �NUM�NUMS �� �� ���

�� �NUM�NUMS ��� ���

�� �NUM�NUMS ����

�� �NUM�NUMS NIL�

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS NIL�

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�	 �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�

It would be hard to de
ne num�nums iteratively� �It is not impossible� but
requires you know how to use a stack to mimic the recursion��

Many arti
cial intelligence tasks involve searching through nested struc�
tures� For example� tree representations of the moves in a game are best
represented as a nested list� Searching the tree involves recursively tracking
through the tree� For this kind of application� recursive function de
nitions
are an essential tool�

When should you use iteration� and when use recursion There are �at
least� these three factors to consider�

���� WHEN TO USE RECURSION	WHEN TO USE ITERATION ��

��� When To Use Recursion�When To Use
Iteration

So far� the two examples of operations presented are just as easy to program
recursively as iteratively� However� there are many problems for which
recursion is natural and iteration is extremely di!cult� This typically arises
when considering objects with a complex nested list structure� For example�
consider this LISP�format mathematical expression�

��setf math�formula ��� 	 �� �� � pi� � �� 	 ��� �� �� ����

�� 	 �� �� � PI� � �� 	 ��� �� �� ���

Math�formula contains lists within lists within lists�
Suppose we would like to know how many numbers are buried in the

depths of this formula� Here is a recursive function that will
nd out�

�defun num�nums �mf�

�cond

��null mf� �� �� empty list has none

��numberp �first mf�� �� if first is number

��� �num�nums �rest mf���� �� add to number in rest

��atom �first mf�� �� if it�s any other atom

�num�nums �rest mf��� �� ignore it� count rest

�t �� �num�nums �first mf�� �� else it�s list to count

�num�nums �rest mf������ �� and add to num in rest

Try this function out and watch it using trace� Notice that the depth of
recursion �uctuates as sub�lists are processed�

��num�nums math�formula�

�� �NUM�NUMS �� 	 �� �� � PI� � �� 	 ��� �� �� ����

�� �NUM�NUMS �	 �� �� � PI� � �� 	 ��� �� �� ����

	� �NUM�NUMS ��� �� � PI� � �� 	 ��� �� �� ����

�� �NUM�NUMS �� �� � PI� � �� 	 ����

�� �NUM�NUMS ��� � PI� � �� 	 ����

�� �NUM�NUMS �� � PI��

�� �NUM�NUMS �� PI��

�� �NUM�NUMS �PI��

�� �NUM�NUMS NIL�

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� �NUM�NUMS ��

�� CHAPTER �� RECURSION AND ITERATION

Sometimes when setting up a lot of local variables one would like the value
of one variable to depend on another� Let� however� does all its assignments
in parallel� so that� for instance�

�let ��a 	�

�b a���

produces an error since a is still an unbound variable when the let statement
tries to assign the value of b� Let has a sibling let� which does its variable
assignments simultaneously� So�

�let� ��a 	�

�b a���

is
ne� and intializes both a and b to the value ��
Let has applications beyond iterative processes� Anytime you need a

temporary storage handle for a value� good LISP programming demands
that you should think in terms of using a let statement rather than a global
variable�

��� Iteration Using Dolist

Dolist is very much like dotimes� except that the iteration is controlled by
the length of a list� rather than by the value of a count� Here is the general
form for dolist�

�dolist ��next�element� �target�list� �result�� �body��

In a dolist statment result and body work just as in dotimes� Next�element
is the name of a variable which is intially set to the
rst element of target�list
�which must� therefore be a list�� The next time through� next�element is
set to the second element of target�list and so on until the end of target�list
is reached� at which point result�form is evaluated and returned�

Here is num�sublists done as an example�

�defun num�sublists�i �lis�

�let ��result ���

�dolist �next lis result�

�if �listp next�

�setf result ��� result������

The function num�sublists�i works because result is incremented only when�
ever the current element of the list indicated by next is itself a list� Notice
that in the case where the next element of the list is not itself a list there
is no need to do anything� Thus� in the if statement of the de
nition it is
possible to omit the else clause entirely�

���� LOCAL VARIABLES USING LET �

This time the existing value of result� i�e� �� is multiplied by �� so the new
value of result is �� As you can see� the body will be evaluated four times
before count eventually is equal to � and the value of result is returned� ��
� � � � � � � �� � ��� so the correct answer to �power � �� is returned�

The correct performance of power�i clearly depends on the variable �re�
sult� having the right initial value� If for example� result started at 	� 	
multiplied by �� four times� would still be 	� We could de
ne result as
a global variable and set it to � before evaluating the dotimes� This ap�
proach is messy for two reasons� First� there is the possibility of another
function using a global variable called result� If power�i changes that value�
this may cause the other function to malfunction� and vice versa� Second�
once power�i has returned its answer we no longer need result for anything�
However� if result is a global variable it will keep on using up memory�

The proper way to handle the result variable is to treat it as a local
variable� accessible only to power�i� A local variable cleanly disappears
when power�i is done� so neither of the aforementioned problems arises�
The let statement is what enables us to create local variables�

��� Local Variables Using Let

The general form of a let statement is�

�let ���vbl�� �expr���

��vbln� �exprn���

�body��

The
rst part of a let statement is a list of pairs of variable names and
expressions providing initial values for those variables� If any of the value
expressions is omitted� the corresponding variable is set initially to nil� The
left parenthesis before let matches the right parenthesis after the body� and
together they de
ne the code block within which the local variables are
recognized� The body� as usual� is any sequence of LISP expressions� Let
returns the value of the last expression evaluated in the body�

Here is an example of a let statement evaluated directly by the inter�
preter�

��let ��x 	�

�y �� �� 	����

�� x y��

��

�� CHAPTER �� RECURSION AND ITERATION

�defun num�sublists �lis�

�cond

��null lis� �� �� stop if no elements

��listp �first lis�� �� first is a list

��� �num�sublists �rest lis���� �� add to number in rest

�t �num�sublists �rest lis����� �� else count in rest

Try this function out on various examples �and don�t forget to use trace
to see what it is doing�� Also� think about what would happen if num�
sublists is called with an atom as its argument� and how you might alter
the de
nition to handle this�

��� Iteration Using Dotimes

Common LISP provides several means to do iteration� including loop� do�
do�� dotimes� and dolist� Comprehensiveness is not our aim here� so you
are referred to Steele for information on loop� do� and do�� Here� we will
discuss two simple iteration macros� dotimes and dolist�

The speci
cation for dotimes is as follows�

�dotimes ��counter� �limit� �result�� �body��

Counter is the name of a local variable that will be initially set to 	�then
incremented each time after body is evaluated� until limit is reached� limit
must� therefore� evaluate to a positive integer� Result is optional� If it
is speci
ed� then when limit is reached� it is evaluated and returned by
dotimes� If it is absent� dotimes returns nil� The body of a dotimes state�
ment is just like the body of a defun � it may be any arbitrarily long
sequence of LISP expressions�

Here is power de
ned with dotimes�

�defun power�i �x y�

�let ��result ���

�dotimes �count y result�

�setf result �� x result�����

For the moment� ignore the let statement here� except to note that it estab�
lishes a local variable called �result� whose initial value is �� Concentrate
on the dotimes� What happens when the interpreter evaluates �power�i �
�� First x and y are set to � and �� as before� Then count is intialized
at 	� Since count does not equal y� the body � �setf result �� � result�� �
is evaluated� Since result is initially �� its new value is �� Then count is
incremented to �� which is again not equal to y� so body is evaluated again�

��
� RECURSIVE DEFINITIONS ��

like provide the correct answer� �Or� at least provide an informative error
message��

����� Using Trace To Watch Recursion

LISP provides a nice way to watch the recursive process using trace� Enter
the following�

��trace power�

POWER

��power 	 ��

�� �POWER 	 �� �� Your actual output

�� �POWER 	 	� �� may vary in format

	� �POWER 	 ��

�� �POWER 	 ��

�� �POWER 	 ��

�� �POWER ��

�� �POWER 	�

�	 �POWER ��

�� �POWER ���

�� �POWER ���

��

In this output� each number at the beginning of the line represents the
depth of the recursion� from the top�level to the deepest call� All calls to
power are documented� along with the values returned� This is a useful
debugging tool to see whether your recursive function is doing what you
think it should be doing�

If you rede
ne power and want to keep on watching the trace� then the
instruction to �trace power� may have to be repeated� If you want to turn
trace o�� then �untrace power� will turn o� trace for that speci
c function�
�untrace� with no arguments will turn o� trace for all functions you may
have traced�

����� Another Example

Here�s another recursive function� This one counts the number of elements
of a list that are themselves lists�

�� CHAPTER �� RECURSION AND ITERATION

��power 	 ��

��

All well and good� Here is what happened� When �power � �� is evaluated�
the local variables x and y are set to � and � respectively� Then the if
statement is evaluated� Since y is not equal to zero� the expression �� x
�power x ��� y��� is evaluated� �� is a function that decrements its argument
by �� There is a corresponding function ���� This is the same� then� as ��
� �power � ���� Obviously� this multiplication cannot be completed without

rst calculating �power � ��� So� another call to power is made� This time�
x and y are both �� It is important to realize that these new values of x
and y are local only to the second call to power � the previous call knows
nothing about them� and neither will any subsequent call� As before� the
test clause of the if statement is false� so the expression �� � �power � ���
needs to be evaluated� which results in a third call to power with x equal
to � and y equal to �� The
fth time that power gets called� its arguments
are � and 	� this time the test clause is true� so �power � 	� returns � and
the recursion stops� Now the previous call to power �the fourth one� is able
to complete the multiplication �� � �power � 	�� and returns � to the next
level up� and so on� Eventually the
rst call to power �the �top�level� call�
is able to
nish its multiplication� the result is ���

Each time power is called recursively� a new level of recursion is created�
Is there a limit to how deep the recursion can go The answer is yes� but
how deep this limit is� and how easy it is to change it� will depend on the
particular version of LISP you are using� If you exceed the limit� you will
see an error message saying something like �Function call stack over�ow��
This limit is a practical limit imposed by hardware limitations and details
of the speci
c implementation of LISP you are using� In principle there is
no limit to how deep recursion can go�

Any recursive function will cause a stack over�ow if it does not have
a proper termination condition� In the case of power� the termination
condition �given in the test clause of the de
nition� is that the second
argument is 	� The termination condition is the most important part of a
recursive de
nition� You want to make sure your program will terminate�
Were it not for the stack over�ow� a bad terminate condition would result
in an in
nite spiral�

Think too� what would happen if you called this version of power with
y as a negative number or a non�integer as the second argument� This
shortcoming of power does not make it a �robust� piece of programming�
since it is not always safe to assume that whoever uses power will be careful
not to make y negative or an integer� A robust power function would
do something appropriate with negative or non�integer second arguments�

Chapter �

Recursion and Iteration

Many� if not most� uses for computers involve repetitive procedures� LISP
provides two paradigms for controlling repetition � recursion and iteration
� both covered in this chapter� Also in this chapter you will
nd out how
to set up code blocks with local variables using let�

��� Recursive De�nitions

����� A Simple Example

The distinctive feature of a recursive function is that� when called� it may
result in more calls to itself� For example� look at this de
nition of a
function to calculate x to the power of y �for positive integer values of y��

�defun power �x y�

�if �� y �� �

�� x �power x �� y ������

The else clause of the if statement in this de
nition contains a reference
to power� How can a function make use of itself in its own de
nition
To understand this� let�s examine how power works when it is called� �As
always� we assume that you have a machine running LISP in front of you�
and that you experiment with the examples we give��

Use an editor to enter the de
nition of power given above and evalu�
ate it in the LISP interpreter� Now enter the following expression at the
interpreter�s prompt�

��

�� CHAPTER �� DEFINING LISP FUNCTIONS

�defun circulate �lst�

�append �rest lst�

�list �first lst����

This function takes a list and constructs a new list by taking the
rst
element of the old list and making it the last element of the new� For
example�

��circulate ���whats� happening here��

�happening here �whats��

Rewrite the function and call it CIRCULATE�DIR so that it can
circulate lists in both directions� Thus it should work as follows�

��circulate�dir ��� � 	 �� �left�

�� � � 	�

��circulate�dir ��� � 	 �� �right�

�� 	 � ��

�� With the de
nition of CIRCULATE given above� what happens �and
explain why� when we evaluate

a
 �circulate �hello�

b
 �circulate nil�

� De
ne a function called MY�AND which acts like the LISP AND
function �but only takes � arguments� using only IF�

���� EXERCISES ��

Suppose you are running the LISP interpreter and you enter the fol�
lowing�

��setf a �oh�boy�

Then you do the following�

��life �gummi a�

What are the global and local values of a and b before� during� and
after this command

�� Consider the following function de
nition�

�defun who�knows �lst� lst��

�cond ��� �length lst�� �length lst���

�� �length lst�� �length lst����

��� �length lst�� �length lst��� �length lst���

�t �length lst�����

a� What does this function do Be precise as what would happen
in each case�

b� How would you make this function crash �return an ERROR�
Be careful in explaining why it will happen�

�� Write a function called BLENGTH �B stands for better� which is
more tolerant of bad arguments� and is more informative� It works as
follows�

��blength ��a b c d��

�

��blength �hello�

�sorry hello is an atom�

��blength ��

�sorry � is a number�

Thus� if a list is passed in it should return the proper length� else if a
number� or another type of atom is passed in� it should identify them
as such�

�� Consider the following de
nition for the function CIRCULATE�

�	 CHAPTER �� DEFINING LISP FUNCTIONS

����� Logical Operators� And and Or

And and or are functions but not predicates since they may return values
other than t or nil� Each evaluates its arguments in the order they appear�
but only enough arguments to provide a de
nitive result are evaluated� So�
some arguments to and and to or may not be evaluated at all�

And returns nil as soon as it
nds an argument which evaluates to nil�
otherwise it returns the value of its last argument� For example�

��and � � 	 ��

�

��and � �cons �a ��b�� �rest ��a�� �setf y �hello��

NIL

In the example immediately above� the expression �setf y �hello� is never
evaluated since �rest ��a�� returns nil� You can check this out by evaluating
y directly�

�y

��

Or returns the result of its
rst non�nil argument� and does not evaluate the
rest of its arguments� If all the arguments evaluate to nil� then or returns
nil� Examples�

��or nil nil � �setf y �goodbye��

�

��or �rest ��a�� �equal 	 ���

NIL

Once again� you will see that y�s value is unchanged by these examples�

��	 Exercises

�� Use the LISP interpreter to help you learn or refresh your memory
about the behavior of these predicates� �� �� ��� ��� �� zerop�
numberp� symbolp� atom� constantp� listp� functionp

�� Consider the following de
nition�

�defun life �a b�

�cond ��null a� b�

��null b� a�

�t �its�tough���

���� MORE PREDICATES AND FUNCTIONS ��

��eq �first a� �first b��

T or NIL �depending on implementation of Common LISP�

��eql �first a� �first b��

T

In most cases� you will want to use either � or equal� and fortunately these
are the easiest to understand� Next most frequently used is eq� Eql is used
by advanced programmers�

����� Checking for NIL

The predicates null and not act identically� Good programming style dic�
tates that you use null when the semantics of the program suggest interest
in whether a list is empty� otherwise use not�

��null nil�

T

��not nil�

T

��null ���

T

��not ��� ��preferable to use null

T

��null ��a s��

NIL

��not ��a s�� ��preferable to use null

NIL

��not �� � �� � ����

NIL

��null �� � �� � ���� ��preferable to use not

NIL

�� CHAPTER �� DEFINING LISP FUNCTIONS

��eql 	 ����

T

��equal 	 	�

T

��equal 	 	
��

T

Suppose now we have the following variable assignments�

��setf a ��� � 	 ���

�� � 	 ��

��setf b ��� � 	 ���

�� � 	 ��

��setf c b�

�� � 	 ��

Then�

��eq a b�

NIL

��eq b c�

T

��equal a b�

T

��equal b c�

T

��eql a b�

NIL

��eql b c�

T

��� �first a� �first b��

T

���� MORE PREDICATES AND FUNCTIONS �

��� More Predicates and Functions

����� Equality Predicates

Common LISP contains a number of equality predicates� Here are the four
most commonly used�

� �� x y� is true if and only x and y are numerically equal�

equal As a rule of thumb� �equal x y� is true if their printed representations
are the same �i�e� if they look the same when printed�� Strictly� x
and y are equal if and only if they are structurally isomorphic� but
for present purposes� the rule of thumb is su!cient�

eq �eq x y� is true if and only if they are the same object �in most cases�
this means the same object in memory��

eql �eql x y� is true if and only if they are either eq or they are numbers
of the same type and value�

Generally � and equal are more widely used than eq and eql�
Here are some examples involving numbers�

��� 	 	
��

T

��� 	�� ����

T

��eq 	 	
��

NIL

��eq 	 	�

T or NIL �depending on implementation of Common LISP�

��eq 	 ����

T

��eq 	
� ����

NIL

��eql 	
� 	���

NIL

�� CHAPTER �� DEFINING LISP FUNCTIONS

We will call each of the lines ��test�������result�� a �cond clause�� or
sometimes just �clause� for short� In cond clauses� only the test is required�
but most commonly cond clauses contain just two elements� test and result�

Instead of nesting if statements as before� the set of conditions �if A B
�if C D E�� can be expressed using cond� It would look like this�

�cond �A B�

�C D�

�t E��

A through E can be any LISP expressions at all� If the evaluation of the
test expression at the beginning of a clause returns nil� then the rest of the
clause is not evaluated� If the test returns a non�nil value� all the other
expressions in that clause are evaluated� and the value of the last one is
returned as the value of the entire cond statement� �The intermediate forms
are� therefore� only useful for producing side�e�ects� It is common to put t
as the test for the last clause since this means that the last clause always
will act as a default if none of the other tests succeed�

Here�s a simple example� using cond instead of if� de
ning absdi� to act
as before�

�defun absdiff �x y�

�cond ��� x y� �� x y��

�t �� y x����

Notice the double left parenthesis immediately following cond in this exam�
ple� A common beginner�s programming error is to omit one of these� but
both are required since the test in this cond clause is �� x y�� With just
one parenthesis� the cond statement would attempt to treat the symbol �
as the test� which would result in an unbound variable error� Conversely�
there is only one left parenthesis in front of the t in the second clause�
Again� the explanation is that the test is to evaluate the constant t�

Cond and if statements are most powerful in de
ning functions that
must repeat some step or steps a number of times� In the next chapter� you
will see how cond and if are essential for giving recursive function de
nitions
which exploit the power of LISP to solve repetitive problems� Before we can
exploit that potential� it will be necessary to learn some more commonly
used predicates and functions� that serve well as test statements�

���� CONDITIONAL CONTROL ��

��� Conditional Control

��
�� If

An if statement has the form�

�if �test� �then� �else��

The test� then� and else expressions can be any evaluable Lisp expressions
� e�g�� symbols or lists� If the evaluation of the test expression returns
anything other than nil� e�g� T� �� FOO� �A S D F�� the interpreter evaluates
the then expression and returns its value� otherwise it returns the result of
evaluating the else expression�

We can use if to de
ne a function to return the absolute di�erence
between two numbers� by making use of the predicate � �greater than��
Here it is�

�defun absdiff �x y�

�if �� x y�

�� x y�

�� y x���

If x is greater than y� then the test� i�e� �� x y�� returns T� so the then
clause is evaluated� in this case �� x y�� which gives the positive di�erence�
If x is less than or equal to y� then the expression �� y x� gets evaluated�
which will return 	 or a positive di�erence�

��
�� Cond

If is useful� but sometimes one would like to have multiple branching con�
ditions� E�g� if condition A is met then do B� but if condition A is not met
but condition C is met� then do D� but if neither condition A nor C is met
then do E� This could be coded using if as follows �schematically��

�if A B �if C D E��

This is not too bad� But things can get a lot worse if you want to have
a long chain of test conditions�

LISP provides a very convenient macro called cond for such situations�
The general form of a cond statement is as follows�

�cond ��testa� �form�a� �form�a�

 �resulta��

��testb� �form�b� �form�b�

 �resultb��

��testk� �form�k� �form�k�

 �resultk���

�� CHAPTER �� DEFINING LISP FUNCTIONS

��� Functions with Extended Bodies

As mentioned before� a function de
nitionmay contain an inde
nite number
of expressions in its body� one after the other� Take the following de
nition�
which has two�

��defun powers�of �x�

�square x�

�fourth�power x��

POWERS�OF

��powers�of ��

��

Notice that this function only returns the value of the last expression in its
body� In this case the last expression in the body is �fourth�power x� so
only the value �� gets printed in the example above�

What is the point of having more than one expression in the body of
a function if it only ever returns the last The answer to this question is
that we may be interested in side e�ects of the intermediate evaluations�

Powers�of does not have any side e�ects as it is� but change the de
nition
as follows�

��defun powers�of �x�

�setq y �square x��

�fourth�power x��

POWERS�OF

Watch what happens here�

�y

��

��powers�of ��

����

�y

��

The side e�ect of powers�of was to set the value of the variable y to ��
Since y did not appear in the parameter list of powers�of� it is treated as a
global variable� and the e�ect of the set lasts beyond the life of your call to
powers�of�

���� USING YOUR OWN DEFINITIONS IN NEW FUNCTIONS ��

When typing code in an editor� two elements of good programming
practice should be followed�

�� LISP code should be indented in a way which reveals its structure�
Some editors� such as emacs� will automatically indent LISP code in
a reasonable way� If your editor will not do this� follow examples in
these chapters as a guide to one common indenting practice�

�� All code should be commented to improve readability� In LISP� any�
thing on a line following a semi�colon is treated as a comment and
is ignored by the interpreter� Opinions vary on the best use of com�
ments� Too many comments can make code as hard to read as too
few� Choosing mnemonic names for functions and variables can cut
down on the number of comments needed for readability� You might
wonder why you need comments if you are to be the only person to
read your own code� Write some code and then come back to it two
months later and you will understand why comments are important�

You are not recommended to go any further in this chapter until you know
how to use a program editor on your computer�

��� Using Your Own De�nitions in New Func

tions

User�de
ned functions can be included in new function de
nitions� For
example�

��defun fourth�power �x�

�square �square x���

FOURTH�POWER

��fourth�power ��

��

It is worth paying attention to what happens when fourth�power is called�
During the computation� the variable �x� gets assigned as many as four
times� First� x is bound to �� which is its local value for the function
fourth�power� Fourth�power evaluates �square �square ���� which means
that square is called once with the argument �� and again with the argument
�� Each time square is called� a local version of x is bound to the appropriate
value� Finally� x is restored to whatever global value it previously had�

�� CHAPTER �� DEFINING LISP FUNCTIONS

��y�plus �	�

��

�x

�

��setq y ���

��

��y�plus �	�

��

Go through these examples �and try out others� to make sure you under�
stand why they behave as shown�

The distinction between local and global variables is very important�
and we will come back to it several times� If LISP is not your
rst pro�
gramming language one of the most likely signs of an �accent� from the
other language�s� is the overuse of global variables� Good LISP program�
mers use local variables as much as they can� rather than using global ones�
Local variables disappear when the function that uses them is done� Global
variables hang around for ever� so they take up more memory�

��� Using an Editor

Simple function de
nitions� like square� are easily typed directly at the in�
terpreter�s prompt� However� for longer functions this soon becomes inade�
quate� because you will want to slightly modify de
nitions without having
to completely retype them� not to mention the likelihood that you will make
typographic errors when typing them in�

The solution is to write your functions in a program editor and then
transfer them to the interpreter for evaluation� Exactly how you do this
will vary from system to system and editor to editor� One of the most
popular editors for writing LISP code on UNIX�tm�� systems is emacs�
since it provides convenient methods for transferring code between editor
to interpreter� Additionally� most LISP interpreters allow you to directly
call an editor from the interpreter prompt by typing �ed �
lename���

If you have lots of function de
nitions� they will need to be stored
in a
le and then loaded into the interpreter using the instruction �load
�
lename��� Once again� the details on how to save
les and specify their
names for loading will vary from system to system�

�UNIX�tm� is a registered trademark of AT�T Bell Laboratories

���� LOCAL AND GLOBAL VARIABLES ��

������

�x

	

Setting x to � has no e�ect on the operation of square � neither does the
function square have a �lasting� e�ect on the value of x� This is because the
interpreter makes a distinction between local variables and global variables�

Global variables have values that can be accessed by any function� The
values of local variables are de
ned only relative to a certain �block� of
code� The body of a function de
nition implicitly constitutes a code block�

In the de
nition of square� the variable list �x� tells the interpreter what
variables are local to the body of the function� i�e� in this case x is a local
variable while the block �� x x� is evaluated�

When you make a call to a square� e�g�� �square ����� the interpreter
assigns ��� as the value of x that is local to the function square� �Local�
means that functions other than square do not know about this value for x�
Inside the body of square the local value of x �e�g�� ���� is preferred to the
global value �e�g�� �� that you gave it at the top level� As soon as �square
���� returns ���	��� the local value of x no longer is stored� and the only
value of x the interpreter knows about is its global value� ��

The rule the interpreter follows for evaluating symbols is that inside
code blocks local values are always looked for
rst� If a local value for the
variable does not exist� then a global value is sought� If no global value is
found then the result is an error� This precedence order can be seen with
the following example� First de
ne the following function�

��defun y�plus �x�

�� x y��

Y�PLUS

If you have not assigned a value to y� then typing �y�plus �� will give an
error �unbound variable y�� Now do the following�

��setq y ��

�

��y�plus ��

�

��setq x ��

�

�	 CHAPTER �� DEFINING LISP FUNCTIONS

For present purposes� the parameter list should be a list of symbols�
The symbols in this list must be variables� not constants� �Recall� T and
nil are constants�� In some versions of LISP� pi is also given as a prede
ned
constant that may not be set� The number of symbols in the parameter list
determines the number of arguments that must be passed to the function
when it is called� otherwise an error message will occur� The function square
must be given exactly one argument� Check this out by typing �square �
�� or �square��

�More advanced programming allows the use of %rest� %optional� %key
in the parameter list to permit variable numbers of arguments� The use of
these will not be covered here� You are referred to Steele for details��

Inside the parameter list� x is used as a variable to stand for whatever
argument is provided when square is called� Other symbols would have
worked just as well in the de
nition of square� x is short� so we like it here�
but sometimes it makes more sense to use something like nmbr that can
play a mnemonic role when you look back at your code� Choosing to use
number�to�be�squared for the name of the variable would soon get tiresome
after you had mistyped it for the umpteenth time�

The body of a function can be a single LISP instruction� or it can be an
inde
nitely long set of instructions� Good programming style dictates that
you keep the body of a function reasonably short �short enough to read on
one screen� for example�� Good programming technique also includes build�
ing small functions that perform specialized tasks and then using those as
building blocks for more complicated tasks� The advantage of this technique
is that the building blocks can be written and tested separately� Simple�
short functions are much easier to debug than �	�line monsters�

Even though we don�t want the interpreter to evaluate the name� pa�
rameters� and body components when the function is being de
ned� notice
that none of them requires a quote� Defun� like setq and setf� takes care of
this automatically�

��� Local and Global Variables

An important question that might occur to you is what would happen if
you had set x to have some value� before using the function square Try it
out�

��setf x 	�

	

��square 	���

Chapter �

De�ning LISP functions

��� De�ning Functions
 Defun

Use defun to de
ne your own functions in LISP� Defun requires you to
provide three things� The
rst is the name of the function� the second
is a list of parameters for the function� and the third is the body of the
function � i�e� LISP instructions that tell the interpreter what to do when
the function is called�

Schematically then� a function de
nition looks like this�

�defun �name� �parameter�list� �body��

Here is an example of a function to calculate the square of a number� It is
short enough to be typed directly at the interpreter�s prompt�

��defun square �x�

�� x x��

SQUARE

��square ��

�

��square �
��������

�
������	������	��

The name of a user�de
ned function can be any symbol� �Recall� A symbol
is any atom that is not a number�� It is even possible to rede
ne LISP�s
prede
ned functions such as
rst� cons� etc� Avoid doing this�

��

�� CHAPTER
� LIST PROCESSING

��� EXERCISES �

c� �watergate and no viewer�

d� �bush nixon kennedy�

e� ��bush broccoli� �nixon watergate� �letterman mail��

�� CHAPTER
� LIST PROCESSING

b� �rest ������f������

c� �
rst ��rest �a b c���

d� �
rst ��rest �rest �a b c����

e� �cons ��my life as� ��a dog��

f� �append ��my life as� ��a dog��

g� �list ��my life as� ��a dog��

h� �cons �rest nil� �
rst nil��

i� �abs �� �length �rest ����a b� �c d����� ���

j� �reverse �cons ��rest �reverse ��its gut na mur ta give captin�����

�� Using
rst and rest extract the atom �jim� from the following�

a� �he is dead jim�

b� �captain ���jim� kirk���

c� �����spock� asked� jim� if� he was all right�

d� �after �looking at the �lizard man� ����jim��� asked for warp ����

�� What is returned by each of the following expressions �assume they
are evaluated in the given order�

a� �setf trek ��picard riker laforge worf��

b� �cons �data trek�

c� trek

d� �length �cons �troi trek��

e� �setf trek �cons �data trek��

f� �length �cons �troi trek��

�� Given the following de
nition�

�setf mylist ���bush broccoli� �nixon watergate�

�letterman �viewer mail��

�you are no jack kennedy�

�and please� �scorsese �robert deniro����

Construct the following with any of the functions you have learned
so far�

a� �no broccoli please�

b� ��scorsese and deniro� are no robert kennedy�

��� EXERCISES ��

LISP programs very frequently make use of changes of this sort� But some�
times one would like to change just part of the value of a variable� Suppose
you assign a value to a variable as follows�

��setq words ��a list of words��

�A LIST OF WORDS�

What if you want to change just part of the list that is the value of words
Well� you could say

��setq words �cons �this �rest words���

�THIS LIST OF WORDS�

but with lengthy list structures this can get complicated� What you need
is a way to change just part of a list� setf is what you need� Look at this
sequence to see just some of the ways in which it can be used�

��setf �first words� �the�

THE

�words

�THE LIST OF WORDS�

��setf �third words� �is�

IS

�words

�THE LIST IS WORDS�

��setf �rest words� ��game is up��

�GAME IS UP�

�words

�THE GAME IS UP�

Now you know enough to do the exercises below�

��� Exercises

Note� A temptation if you are not used to computers is to sit down and
try to work out these exercises in your head and be satis
ed when you have
reached some answer or other� DON�T� Use the LISP interpreter to check
your understanding� If you don�t understand why the interpreter responds
in some way� try to
gure it out by playing with some slight variations of
the problems�

�� Evaluate the following�

a� �
rst ����a�� �b c d e���

�� CHAPTER
� LIST PROCESSING

��length ��� � 	��

	

��length a�

�

��length �append a a��

��

��length ��append a a��

	

��length �list a a��

�

Predicates are functions that always return either t or nil� Atom is a
predicate that determines whether its argument is an atom� Listp returns
t if its argument is a list� and nil otherwise�

��atom �a�

T

��atom a�

NIL

��listp �a�

NIL

��listp a�

T

Find out for yourself how atom and listp work with the empty list� NIL�
Symbolp and numberp are also useful predicates� Experiment with them

to
nd out how they work� Constantp is less frequently used� but might
come in handy some time�

Use the appendix entries� together with the LISP interpreter� to
gure
out how these functions and predicates work�

second� third� fourth����� last� nthcar� nthcdr� butlast� nbutlast� reverse�
caar� cddr� cadr� cdar� constantp� integerp�

��� Setf

Setq is useful for changing the values of variables� For example�

��setq my�age �� my�age ���

��

��setq a �cdr a��

�a s d f�

��� CHANGING VARIABLE VALUES ��

��first a�

a

��rest a�

�s d f�

��first �rest a��

s

You can
gure out the rest� like how to get at the third and fourth elements
of the list using
rst and rest�

��� Changing Variable Values

What happens to the value of a� after saying �cons �a a� Nothing� That
is� it looks like this�

��cons �a a�

�a a s d f�

�a

�a s d f�

Obviously� it would be useful to make these changes stick sometimes� To
do that you can use setq as follows�

��setq a �cons �a a��

�a a s d f�

�a

�a a s d f�

and henceforth� that is the new value of a�
We�ll let you play with the possibilities here� but using setq with just

the three functions
rst� rest� and cons you can do anything you want
to with lists� These primitives are su!cient� Append and list are strictly
super�uous � although they are very convenient� For practice� try to achieve
the same e�ects using just
rst� rest� and cons as in the examples that used
append and list� above�

��� More Functions and Predicates

To
nd out the length of a list� there is a function called� appropriately
enough� length� It takes a single argument which should be a list�

�� CHAPTER
� LIST PROCESSING

append has the e�ect of taking all the members of the lists that are its
arguments and creating a new list from those elements� For example�

��append ��a b� ��c d��

�a b c d�

Beginning LISP programmers �and even some experienced ones� frequently
have trouble deciding whether they should use cons or list or append to
achieve a particular e�ect� The best way to get around the di!culty is to
play with the di�erent functions and see what works�

����� Selectors� First and Rest

There are two primitive list selectors� Historically� these were known as
car and cdr� but these names were hard to explain since they referred to
the contents of various hardware registers in computers running LISP� In
Common LISP the functions have been given alternative names�
rst and
rest� respectively� �You can still use the old names in Common LISP� One of
us learned LISP in the old days� so occasionally we�ll use car or cdr instead
of
rst or rest��

First takes a list as an argument and returns the
rst element of that
list� It works like this�

��first ��a s d f��

a

��first ���a s� d f��

�a s�

Rest takes a list as an argument and returns the list� minus its
rst element�

��rest ��a s d f��

�s d f�

��rest ���a s� d f��

�d f�

��rest ���a s� �d f��

��d f��

You can use setq to save yourself some typing� Do the following�

��setq a ��a s d f��

�a s d f�

You can now use a instead of repeating the list �a s d f� every time� So�

��� SOME PRIMITIVE FUNCTIONS ��

Without the quote you would have received an error message� So now you
might try �cons �a �b c d��� but this still won�t work since the interpreter
tries to evaluate the second argument �b c d�� treating b as the name of a
function� But �we are assuming� you have not de
ned b to be a function�
so it is an error� Once again you can use the � to block evaluation of the
list �b c d�� Thus�

��cons �a ��b c d��

�a b c d�

Notice that you need only one quote on the second argument� The quote
blocks evaluation of the whole thing� so you don�t need quotes on the in�
ternal elements of the list�

Notice� also� that in using setq� the
rst argument � the variable to
be set � does not need a quote� the interpreter does not evaluate it if it
is an atom� Originally� LISP had only the function set� whose proper use
included things like �set �a �� or �set �a �b�� LISP programmers got tired of
putting �or� more likely� forgetting to put� the quote on the
rst argument�
so they wrote setq to take care of it automatically �now you understand
the name� right �� So� �setq a �� is equivalent to �set �a ���

In fact� the � itself is shorthand for another function� The interpreter
expands �a to the expression �quote a�� So �setq a �� is really short for �set
�quote a� ��� Shorthand commands like setq and � are called �macros� by
programmers�

Cons always takes two arguments� �Try it with one or three and see
that you get an error message�� Usually� the second argument is a list� but
the
rst can be either an atom or a list� �Cons can be used with an atom
as the second argument� What gets returned is a slightly esoteric data type
called a �dotted pair�� The use of dotted pairs is relatively rare and will
be ignored here��

The list building functions list and append both allow arbitrary numbers
of arguments� List takes all its arguments and makes a list with them as
elements� Arguments to list will typically be either atoms or lists� For
example�

��list � 	 ��

�� 	 ��

��list �a ��a s d f��

�a �a s d f��

Make sure you understand why list works as shown in these examples�
Append is normally used with lists as arguments� �Only the last argu�

ment may be an atom� resulting in a dotted pair�� When used with lists�

�	 CHAPTER
� LIST PROCESSING

����� Constructors� Cons� List� and Append

The primitive function �cons� allows you to add a member to the front of
a list� Here are two examples�

��cons � nil�

���

��cons � �cons � nil��

�� ��

It is worth looking at what is going on in these examples� In the
rst� cons
is given two arguments� The
rst is � and the second is nil� which� you will
remember� is the same as ��� So� cons takes the
rst argument and inserts
it as the
rst element of the second�

To understand the second example� it is useful to anthropomorphize
the interpreter� It says� �OK� cons is a function I know and I�ve got two
arguments to that function� � and �cons � nil�� The
rst argument is an
atom� but a special one� and evaluates to �� The second is a list� so its
rst
element names a function� i�e� cons� and there are two arguments to that
function� � and nil� � evaluates to �� and nil evaluates to nil �the empty
list�� So� putting � into the empty list we get ���� Now I know what the
second argument to the
rst cons is� we can go ahead and insert the
rst
argument� i�e� �� Hence we get �� ����

Now we discuss what happens when we deal with atoms that are not
special� Suppose you wanted to construct the list �a b c d� and you try to
do this by saying�

��cons a �b c d��

What would happen Well� the interpreter would say �OK� cons I know�
and I�ve got two arguments to evaluate� First� eval a��

Immediately you get an error because �we are assuming� a is an unbound
variable �you haven�t set it to anything�� How do you
x this problem

����� Quote

The answer to the previous question is to use the single quote mark� �� in
front of an item that you do not wish the interpreter to evaluate� It works
as follows�

��a

a

��� SOME PRIMITIVE FUNCTIONS �

��� � �	 ���

��

In this case� the interpreter applied the function � to the evaluated argu�
ments and return with the value �	� Since the numbers are prede
ned� eval

nds values for all the arguments� and everyone is happy� You could also
enter�

��� my�age ��

��

This works
ne because my�age is evaluated and the value �	 is found
�assuming you did just what was described in the section above�� However�

��� your�age ��

will generate an error �unbound variable your�age��
Also� if you attempt to use something that is not a function� you will

generate an error message� So� for example� typing

��foo � 	 ��

causes an error �unde
ned function foo�� unless you had previously de
ned
foo to be a function� �More on de
ning functions in a later chapter��

��� Some Primitive Functions

Functions that are built into the LISP language are called �primitive func�
tions�� There are �of course� lots of primitive functions in LISP� including
all the math functions you would expect� Here�s a list of some of the more
common math functions�

�� �� �� $� exp� expt� log� sqrt� sin� cos� tan� max� min�

You should look at the appendix entries for these functions and play
with them to learn how they work�

More important to the list�processing identity of LISP are the primitive
functions that allow selection from lists and construction of lists� The im�
portant constructor functions are cons� list� and append� The two principal
selector functions are
rst and rest�

� CHAPTER
� LIST PROCESSING

���

NIL

�your�age

Error� The variable YOUR�AGE is unbound

Error signalled by EVAL

The last item illustrates what happens if you try to evaluate an atom that
has not been set to a value� �The exact error message will vary between
versions of LISP� but all will say something about an unbound variable��

Most LISP systems throw you into a debugger mode when an error
occurs� From the debugger you can
nd out lots of useful things about the
state of the interpreter when the problem occurred� Unfortunately� LISP
debuggers are not at all standardized so it is impossible to give a description
here� Even in debugger mode� although the prompt usually is di�erent� the
LISP interpreter continues to evaluate LISP expressions normally� So we
will ignore what is going on when an error occurs and assume that you can
just carry on giving expressions to the interpreter for evaluation�

Notice that it is an error to attempt to set a value for special atoms�
numbers� t� or nil�

��setq � ��

Error� � is not a symbol

Error signalled by SETQ

��setq t nil�

Error� Cannot assign to the constant T

Error signalled by SETQ

From these error messages you can see that the interpreter distinguishes
between symbols� numbers� constants� Numbers and symbols are mutually
exclusive subcategories of atoms� Constants �such as t and nil� are a sub�
category of symbol� Only symbols which are not constants may be assigned
a value with setq�

����� Lists

The second rule of evaluation concerns lists� The interpreter treats any
list as containing the name of a function followed by the arguments to the
function� Schematically then� a list is read like this�

�name�of�function first�argument second�argument

�

For example� try the following�

��� BASIC DATA TYPES

����� Atoms

The
rst rule of evaluation is that for any atom the evaluator� known as
�eval�� attempts to
nd a value for that atom�

For most atoms� eval will return an error unless you have previously
assigned a value to it� To assign a value to an atom use setq �or you can
use its more sophisticated cousin� setf� more on setf in later chapters�� So�
for instance� to assign the value � to the atom �my�age� type the following
to the interpreter�

��setq my�age �� � you assign � to the atom my�age

� � interpreter responds with value

Now� you may test what you have done by giving the atom to the inter�
preter�

�my�age � you tell interpreter to eval my�age

� � it responds with the set value

If a birthday has just passed� you can change the value of my�age as follows�

��setq my�age ���

��

�my�age

��

�� �	� ����� and all the other numbers are special atoms in LISP � they
are pre�de
ned to evaluate to themselves� So� you may give any number to
the interpreter� and it will respond by repeating the number�

In addition to numbers� two other special atoms are prede
ned� t and
nil �think of them as true and false respectively�� The interpreter considers
nil to be identical to the empty list� Typing �� directly to the interpreter
will cause it to respond with nil�

Try the following sequence�

��

�

���

��

�my�age

��

�t

T

�nil

NIL

� CHAPTER
� LIST PROCESSING

��� � � 	 ��

��

�

In this example� the user typed the LISP expression �� � � � �� and the
interpreter responded with �	 and a new prompt�

The interpreter runs what is known as a read�eval�print loop� That
is� it reads what you type� evaluates it� and then prints the result� before
providing another prompt�

In what follows� it will be assumed that you have a LISP interpreter
running in front of you� Exactly how to start LISP up will depend on the
computer system you are using� If you need to� check the instructions for
your LISP interpreter or ask a local person to
nd out how to get started�
You will also need to know how to get out of the LISP interpreter� This too
varies� even between implementations of Common LISP� but �quit�� �exit��
and �bye� are some common alternatives�

Do not go any further until you know how to start up and exit LISP on
your system�

��� Basic Data Types

The two most important kinds of objects in LISP for you to know about are
atoms and lists� These two kinds are mutually exclusive� with the exception
of one special entity� the empty list� known as ���� or �nil�� which is both
an atom and a list�

Atoms are represented as sequences of characters of reasonable length�

Lists are recursively constructed from atoms� This means that a given
list may contain either atoms or other lists as members�

Examples�

ATOMS LISTS
a ��

john �a�
�� �a john �� c�po�

c�po ��john ��� a ��c�po���

Atoms and lists are both legal LISP expressions for the interpreter to
read and evaluate� The rules for evaluating atoms and lists in LISP are
very simple �one of the great beauties of the language�� They are covered
in the next two sections�

Chapter �

LISt Processing

��� Background and Getting Started

LISP is an acronym for LISt Processor� It was developed by John Mc�
Carthy in the late ���	s� LISP found many adherents in the arti
cial
intelligence community� and it is one of the oldest computer languages still
in widespread use� The idea for LISP came from a logical system called
�lambda calculus� developed by Alonzo Church�

There are many variants �or dialects� of LISP including Scheme� T� etc�
In the ���	s there was an attempt to standardize the language� The result
is Common LISP �see Guy L� Steele� Jr�� Common LISP� The Language�

�nd Edition� Digital Press� ���	�� Common LISP is now the most popular
dialect�

If you are familiar with another programming language� such as C� Pas�
cal� or Fortran� you will be familiar with the concept of a compiler� A com�
piler is a program that takes a complete program written in one of these
languages and turns it into a set of binary instructions that the computer
can process� Unlike most languages� LISP is usually used as an interpreted
language� This means that� unlike compiled languages� you start an inter�
preter which can process and respond directly to programs written in LISP�
When you start up a LISP interpreter� a prompt will appear� something
like this�

�

The LISP interpreter waits for you to enter a well�formed LISP expres�
sion� Once you have entered an expression� it immediately evaluates the
expression entered and returns a response� For example�

�

� CONTENTS

not ��	
nth ���
nthcdr ���
null ���
numberp ���
or ���
read ���
rest ��

reverse ���
second� third�� � � �tenth ���
setf ��	
symbolp ���
y�or�n�p� yes�or�no�p ���

CONTENTS �

� Functions	 Lambda Expressions	 and Macros ��

�� Eval ��

�� Lambda Expressions ��

�� Funcall ��

�� Apply ��

�� Mapcar ��

�� Backquote and Commas ��

�
 Defmacro ��

A Selected LISP primitives �

� ��
� ��
� ��
��� �� �

� ��
������� �� ��
and �	
append ��
apply ��
atom ��
butlast ��
car ��
c�r ��
cdr �

cond ��
cons �		
defun �	�
do �	�
documentation �	�
eql �	�
equal �	

eval �	�
evenp� oddp �	�

rst ��	
if ���
length ���
let ���
list ���
listp ���
mapcar ���
max� min ��

member ���

� CONTENTS

 Recursion and Iteration

��� Recursive De
nitions ��

����� A Simple Example ��

����� Using Trace To Watch Recursion � � � � � � � � � � � ��

����� Another Example ��

��� Iteration Using Dotimes ��

��� Local Variables Using Let �

��� Iteration Using Dolist ��

��� When To Use Recursion$When To Use Iteration � � � � � � ��

��� Tail Recursion ��

��
 Timing Function Calls ��

��� Exercises ��

� Programming Techniques ��

��� A Word about LISP ��

��� Recursion on Simple Lists ��

��� Recursion on Nested Lists and Expressions � � � � � � � � � ��

��� Recursion on Numbers ��

��� Ensuring Proper Termination � � � � � � � � � � � � � � � � � ��

��� Abstraction ��

��
 Summary of Rules ��

��� Exercises ��

� Simple Data Structures in LISP ��

��� Association Lists ��

��� Property Lists ��

��� Arrays� Vectors� and Strings � � � � � � � � � � � � � � � � � � ��

����� Arrays and Vectors ��

����� Strings ��

��� Defstruct ��

��� Exercises� ��

� Input and Output ��

��� Basic Printing �
�

��� Nicer Output Using Format � � � � � � � � � � � � � � � � � �
�

��� Reading �
�

��� Input and Output to Files � � � � � � � � � � � � � � � � � � �
�

��� Converting Strings to Lists � � � � � � � � � � � � � � � � � �
�

Contents

� LISt Processing �

��� Background and Getting Started � � � � � � � � � � � � � � � �
��� Basic Data Types �

����� Atoms �

����� Lists �

��� Some Primitive Functions �
����� Constructors� Cons� List� and Append � � � � � � � � �	

����� Quote �	

����� Selectors� First and Rest � � � � � � � � � � � � � � � ��

��� Changing Variable Values ��
��� More Functions and Predicates � � � � � � � � � � � � � � � � ��

��� Setf ��

��
 Exercises ��

� De�ning LISP functions ��

��� De
ning Functions� Defun ��

��� Local and Global Variables � � � � � � � � � � � � � � � � � � �	

��� Using an Editor ��
��� Using Your Own De
nitions in New Functions � � � � � � � ��

��� Functions with Extended Bodies � � � � � � � � � � � � � � � ��

��� Conditional Control ��

����� If ��
����� Cond ��

��
 More Predicates and Functions � � � � � � � � � � � � � � � � �

��
�� Equality Predicates � � � � � � � � � � � � � � � � � � �

��
�� Checking for NIL ��

��
�� Logical Operators� And and Or � � � � � � � � � � � � �	

��� Exercises �	

�

LISP Primer

Colin Allen Maneesh Dhagat

����

